sage:E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 20691r
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
20691.a2 |
20691r1 |
[0,0,1,21417,−1377918] |
841232384/1121931 |
−1448937949928139 |
[] |
129600 |
1.5949
|
Γ0(N)-optimal |
20691.a1 |
20691r2 |
[0,0,1,−4781073,−4023806328] |
−9358714467168256/22284891 |
−28780222919156379 |
[] |
648000 |
2.3997
|
|
sage:E.rank()
The elliptic curves in class 20691r have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1 |
11 | 1 |
19 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1−2T+2T2 |
1.2.ac
|
5 |
1+5T2 |
1.5.a
|
7 |
1−2T+7T2 |
1.7.ac
|
13 |
1−5T+13T2 |
1.13.af
|
17 |
1+3T+17T2 |
1.17.d
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−8T+29T2 |
1.29.ai
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 20691r do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1551)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.