Properties

Label 20691r
Number of curves $2$
Conductor $20691$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 20691r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20691.a2 20691r1 \([0, 0, 1, 21417, -1377918]\) \(841232384/1121931\) \(-1448937949928139\) \([]\) \(129600\) \(1.5949\) \(\Gamma_0(N)\)-optimal
20691.a1 20691r2 \([0, 0, 1, -4781073, -4023806328]\) \(-9358714467168256/22284891\) \(-28780222919156379\) \([]\) \(648000\) \(2.3997\)  

Rank

sage: E.rank()
 

The elliptic curves in class 20691r have rank \(0\).

Complex multiplication

The elliptic curves in class 20691r do not have complex multiplication.

Modular form 20691.2.a.r

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - q^{5} - 3 q^{7} + 2 q^{10} + 6 q^{13} + 6 q^{14} - 4 q^{16} + 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.