Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 208.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
208.a1 | 208a3 | \([0, -1, 0, -7352, 245104]\) | \(-10730978619193/6656\) | \(-27262976\) | \([]\) | \(144\) | \(0.74753\) | |
208.a2 | 208a2 | \([0, -1, 0, -72, 496]\) | \(-10218313/17576\) | \(-71991296\) | \([]\) | \(48\) | \(0.19823\) | |
208.a3 | 208a1 | \([0, -1, 0, 8, -16]\) | \(12167/26\) | \(-106496\) | \([]\) | \(16\) | \(-0.35108\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 208.a have rank \(1\).
Complex multiplication
The elliptic curves in class 208.a do not have complex multiplication.Modular form 208.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.