Properties

Label 20800v
Number of curves $3$
Conductor $20800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 20800v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20800.dc3 20800v1 \([0, 1, 0, 767, 13663]\) \(12167/26\) \(-106496000000\) \([]\) \(13824\) \(0.80021\) \(\Gamma_0(N)\)-optimal
20800.dc2 20800v2 \([0, 1, 0, -7233, -474337]\) \(-10218313/17576\) \(-71991296000000\) \([]\) \(41472\) \(1.3495\)  
20800.dc1 20800v3 \([0, 1, 0, -735233, -242898337]\) \(-10730978619193/6656\) \(-27262976000000\) \([]\) \(124416\) \(1.8988\)  

Rank

sage: E.rank()
 

The elliptic curves in class 20800v have rank \(0\).

Complex multiplication

The elliptic curves in class 20800v do not have complex multiplication.

Modular form 20800.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{7} - 2 q^{9} - 6 q^{11} + q^{13} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.