Properties

Label 208208i2
Conductor 208208208208
Discriminant 3.096×1018-3.096\times 10^{18}
j-invariant 13278380032156590819 -\frac{13278380032}{156590819}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2133397x86662499y^2=x^3-x^2-133397x-86662499 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z133397xz286662499z3y^2z=x^3-x^2z-133397xz^2-86662499z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x310805184x63209377296y^2=x^3-10805184x-63209377296 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -133397, -86662499])
 
gp: E = ellinit([0, -1, 0, -133397, -86662499])
 
magma: E := EllipticCurve([0, -1, 0, -133397, -86662499]);
 
oscar: E = elliptic_curve([0, -1, 0, -133397, -86662499])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(620,8281)(620, 8281)1.68646308592126756978725087351.6864630859212675697872508735\infty

Integral points

(620,±8281)(620,\pm 8281) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  208208 208208  = 247111322^{4} \cdot 7 \cdot 11 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3095895959415074816-3095895959415074816 = 121276113136-1 \cdot 2^{12} \cdot 7^{6} \cdot 11^{3} \cdot 13^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13278380032156590819 -\frac{13278380032}{156590819}  = 121876113373-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.22992833423936438666651740752.2299283342393643866665174075
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.254306474948650709222541565260.25430647494865070922254156526
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06521683961209131.0652168396120913
Szpiro ratio: σm\sigma_{m} ≈ 4.0893383535882074.089338353588207

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.68646308592126756978725087351.6864630859212675697872508735
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.107674862100023695586987709290.10767486210002369558698770929
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 1(23)12 1\cdot( 2 \cdot 3 )\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.17907616256023478520158046612.1790761625602347852015804661
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.179076163L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1076751.68646312122.179076163\displaystyle 2.179076163 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.107675 \cdot 1.686463 \cdot 12}{1^2} \approx 2.179076163

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 208208.2.a.o

qq33q5+q72q9q11+3q156q17+2q19+O(q20) q - q^{3} - 3 q^{5} + q^{7} - 2 q^{9} - q^{11} + 3 q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3110400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII^{*} additive -1 4 12 0
77 66 I6I_{6} split multiplicative -1 1 6 6
1111 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1313 22 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 3.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 6, 6, 37], [36019, 18, 36018, 19], [1, 12, 0, 1], [1, 9, 9, 82], [1, 18, 0, 1], [36035, 16614, 0, 22021], [11087, 0, 0, 36035], [1637, 16614, 5031, 5381], [1, 0, 18, 1], [1403, 16614, 1404, 16613], [30499, 19422, 1170, 6007], [18017, 0, 0, 36035]]
 
GL(2,Integers(36036)).subgroup(gens)
 
Gens := [[1, 6, 6, 37], [36019, 18, 36018, 19], [1, 12, 0, 1], [1, 9, 9, 82], [1, 18, 0, 1], [36035, 16614, 0, 22021], [11087, 0, 0, 36035], [1637, 16614, 5031, 5381], [1, 0, 18, 1], [1403, 16614, 1404, 16613], [30499, 19422, 1170, 6007], [18017, 0, 0, 36035]];
 
sub<GL(2,Integers(36036))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 36036=223271113 36036 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 , index 144144, genus 33, and generators

(16637),(36019183601819),(11201),(19982),(11801),(3603516614022021),(110870036035),(16371661450315381),(10181),(140316614140416613),(304991942211706007),(180170036035)\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 36019 & 18 \\ 36018 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 36035 & 16614 \\ 0 & 22021 \end{array}\right),\left(\begin{array}{rr} 11087 & 0 \\ 0 & 36035 \end{array}\right),\left(\begin{array}{rr} 1637 & 16614 \\ 5031 & 5381 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1403 & 16614 \\ 1404 & 16613 \end{array}\right),\left(\begin{array}{rr} 30499 & 19422 \\ 1170 & 6007 \end{array}\right),\left(\begin{array}{rr} 18017 & 0 \\ 0 & 36035 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[36036])K:=\Q(E[36036]) is a degree-18077290463232001807729046323200 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/36036Z)\GL_2(\Z/36036\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 1859=11132 1859 = 11 \cdot 13^{2}
33 good 22 2704=24132 2704 = 2^{4} \cdot 13^{2}
77 split multiplicative 88 29744=2411132 29744 = 2^{4} \cdot 11 \cdot 13^{2}
1111 nonsplit multiplicative 1212 18928=247132 18928 = 2^{4} \cdot 7 \cdot 13^{2}
1313 additive 8686 1232=24711 1232 = 2^{4} \cdot 7 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 208208i consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 77b1, its twist by 52-52.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(39)\Q(\sqrt{39}) Z/3Z\Z/3\Z not in database
22 Q(13)\Q(\sqrt{-13}) Z/3Z\Z/3\Z not in database
33 3.1.44.1 Z/2Z\Z/2\Z not in database
44 Q(3,13)\Q(\sqrt{-3}, \sqrt{-13}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.1837465344.1 Z/6Z\Z/6\Z not in database
66 6.0.68054272.3 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.920858014432036649875900696390880960263018006708224.1 Z/9Z\Z/9\Z not in database
1818 18.0.14906962461698694093749740318752768.1 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.