Properties

Label 208725.d
Number of curves $1$
Conductor $208725$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 208725.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
208725.d1 208725l1 \([0, -1, 1, 24402, 4383488]\) \(2478080/14283\) \(-9261605889402075\) \([]\) \(1919808\) \(1.7457\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 208725.d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 208725.d do not have complex multiplication.

Modular form 208725.2.a.d

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{6} + 3 q^{7} + q^{9} - 2 q^{12} - 3 q^{13} - 6 q^{14} - 4 q^{16} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display