Properties

Label 208725.x
Number of curves 22
Conductor 208725208725
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 208725.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
208725.x1 208725m2 [1,0,0,73873,7721462][1, 0, 0, -73873, 7721462] 201333092381/16767201333092381/16767 37129704108753712970410875 [2][2] 691200691200 1.45581.4558  
208725.x2 208725m1 [1,0,0,4298,137787][1, 0, 0, -4298, 137787] 39651821/14283-39651821/14283 3162900720375-3162900720375 [2][2] 345600345600 1.10921.1092 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 208725.x have rank 11.

Complex multiplication

The elliptic curves in class 208725.x do not have complex multiplication.

Modular form 208725.2.a.x

sage: E.q_eigenform(10)
 
qq2+q3q4q62q7+3q8+q9q124q13+2q14q162q17q18+4q19+O(q20)q - q^{2} + q^{3} - q^{4} - q^{6} - 2 q^{7} + 3 q^{8} + q^{9} - q^{12} - 4 q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.