y 2 + x y = x 3 − 73873 x + 7721462 y^2+xy=x^3-73873x+7721462 y 2 + x y = x 3 − 7 3 8 7 3 x + 7 7 2 1 4 6 2
(homogenize , simplify )
y 2 z + x y z = x 3 − 73873 x z 2 + 7721462 z 3 y^2z+xyz=x^3-73873xz^2+7721462z^3 y 2 z + x y z = x 3 − 7 3 8 7 3 x z 2 + 7 7 2 1 4 6 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 95739435 x + 360539749350 y^2=x^3-95739435x+360539749350 y 2 = x 3 − 9 5 7 3 9 4 3 5 x + 3 6 0 5 3 9 7 4 9 3 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 0, -73873, 7721462])
gp: E = ellinit([1, 0, 0, -73873, 7721462])
magma: E := EllipticCurve([1, 0, 0, -73873, 7721462]);
oscar: E = elliptic_curve([1, 0, 0, -73873, 7721462])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 131 , 479 ) (131, 479) ( 1 3 1 , 4 7 9 ) 0.50257598778065094818178669772 0.50257598778065094818178669772 0 . 5 0 2 5 7 5 9 8 7 7 8 0 6 5 0 9 4 8 1 8 1 7 8 6 6 9 7 7 2 ∞ \infty ∞
( 623 / 4 , − 623 / 8 ) (623/4, -623/8) ( 6 2 3 / 4 , − 6 2 3 / 8 ) 0 0 0 2 2 2
( − 298 , 1964 ) \left(-298, 1964\right) ( − 2 9 8 , 1 9 6 4 ) , ( − 298 , − 1666 ) \left(-298, -1666\right) ( − 2 9 8 , − 1 6 6 6 ) , ( 131 , 479 ) \left(131, 479\right) ( 1 3 1 , 4 7 9 ) , ( 131 , − 610 ) \left(131, -610\right) ( 1 3 1 , − 6 1 0 ) , ( 158 , − 70 ) \left(158, -70\right) ( 1 5 8 , − 7 0 ) , ( 158 , − 88 ) \left(158, -88\right) ( 1 5 8 , − 8 8 ) , ( 197 , 809 ) \left(197, 809\right) ( 1 9 7 , 8 0 9 ) , ( 197 , − 1006 ) \left(197, -1006\right) ( 1 9 7 , − 1 0 0 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
208725 208725 2 0 8 7 2 5 = 3 ⋅ 5 2 ⋅ 1 1 2 ⋅ 23 3 \cdot 5^{2} \cdot 11^{2} \cdot 23 3 ⋅ 5 2 ⋅ 1 1 2 ⋅ 2 3
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
3712970410875 3712970410875 3 7 1 2 9 7 0 4 1 0 8 7 5 = 3 6 ⋅ 5 3 ⋅ 1 1 6 ⋅ 23 3^{6} \cdot 5^{3} \cdot 11^{6} \cdot 23 3 6 ⋅ 5 3 ⋅ 1 1 6 ⋅ 2 3
sage: E.discriminant().factor()
j-invariant :
j j j
=
201333092381 16767 \frac{201333092381}{16767} 1 6 7 6 7 2 0 1 3 3 3 0 9 2 3 8 1 = 3 − 6 ⋅ 2 3 − 1 ⋅ 586 1 3 3^{-6} \cdot 23^{-1} \cdot 5861^{3} 3 − 6 ⋅ 2 3 − 1 ⋅ 5 8 6 1 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.4557693386763263270397582840 1.4557693386763263270397582840 1 . 4 5 5 7 6 9 3 3 8 6 7 6 3 2 6 3 2 7 0 3 9 7 5 8 2 8 4 0
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.14553777583138403864140333829 -0.14553777583138403864140333829 − 0 . 1 4 5 5 3 7 7 7 5 8 3 1 3 8 4 0 3 8 6 4 1 4 0 3 3 3 8 2 9
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9491700686970616 0.9491700686970616 0 . 9 4 9 1 7 0 0 6 8 6 9 7 0 6 1 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.693750580977448 3.693750580977448 3 . 6 9 3 7 5 0 5 8 0 9 7 7 4 4 8
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.50257598778065094818178669772 0.50257598778065094818178669772 0 . 5 0 2 5 7 5 9 8 7 7 8 0 6 5 0 9 4 8 1 8 1 7 8 6 6 9 7 7 2
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.75130200820827152650524061592 0.75130200820827152650524061592 0 . 7 5 1 3 0 2 0 0 8 2 0 8 2 7 1 5 2 6 5 0 5 2 4 0 6 1 5 9 2
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 48 48 4 8
= ( 2 ⋅ 3 ) ⋅ 2 ⋅ 2 2 ⋅ 1 ( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot1 ( 2 ⋅ 3 ) ⋅ 2 ⋅ 2 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 4.5310361867623054689124274747 4.5310361867623054689124274747 4 . 5 3 1 0 3 6 1 8 6 7 6 2 3 0 5 4 6 8 9 1 2 4 2 7 4 7 4 7
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.531036187 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.751302 ⋅ 0.502576 ⋅ 48 2 2 ≈ 4.531036187 \displaystyle 4.531036187 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.751302 \cdot 0.502576 \cdot 48}{2^2} \approx 4.531036187 4 . 5 3 1 0 3 6 1 8 7 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 7 5 1 3 0 2 ⋅ 0 . 5 0 2 5 7 6 ⋅ 4 8 ≈ 4 . 5 3 1 0 3 6 1 8 7
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
208725.2.a.x
q − q 2 + q 3 − q 4 − q 6 − 2 q 7 + 3 q 8 + q 9 − q 12 − 4 q 13 + 2 q 14 − q 16 − 2 q 17 − q 18 + 4 q 19 + O ( q 20 ) q - q^{2} + q^{3} - q^{4} - q^{6} - 2 q^{7} + 3 q^{8} + q^{9} - q^{12} - 4 q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) q − q 2 + q 3 − q 4 − q 6 − 2 q 7 + 3 q 8 + q 9 − q 1 2 − 4 q 1 3 + 2 q 1 4 − q 1 6 − 2 q 1 7 − q 1 8 + 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1036, 349, 345, 1036], [1, 2, 2, 5], [1, 4, 0, 1], [1108, 1, 1103, 0], [1022, 1, 179, 0], [461, 4, 922, 9], [1377, 4, 1376, 5], [1, 0, 4, 1], [3, 4, 8, 11]]
GL(2,Integers(1380)).subgroup(gens)
Gens := [[1036, 349, 345, 1036], [1, 2, 2, 5], [1, 4, 0, 1], [1108, 1, 1103, 0], [1022, 1, 179, 0], [461, 4, 922, 9], [1377, 4, 1376, 5], [1, 0, 4, 1], [3, 4, 8, 11]];
sub<GL(2,Integers(1380))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 1380 = 2 2 ⋅ 3 ⋅ 5 ⋅ 23 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 1 3 8 0 = 2 2 ⋅ 3 ⋅ 5 ⋅ 2 3 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1036 349 345 1036 ) , ( 1 2 2 5 ) , ( 1 4 0 1 ) , ( 1108 1 1103 0 ) , ( 1022 1 179 0 ) , ( 461 4 922 9 ) , ( 1377 4 1376 5 ) , ( 1 0 4 1 ) , ( 3 4 8 11 ) \left(\begin{array}{rr}
1036 & 349 \\
345 & 1036
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1108 & 1 \\
1103 & 0
\end{array}\right),\left(\begin{array}{rr}
1022 & 1 \\
179 & 0
\end{array}\right),\left(\begin{array}{rr}
461 & 4 \\
922 & 9
\end{array}\right),\left(\begin{array}{rr}
1377 & 4 \\
1376 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right) ( 1 0 3 6 3 4 5 3 4 9 1 0 3 6 ) , ( 1 2 2 5 ) , ( 1 0 4 1 ) , ( 1 1 0 8 1 1 0 3 1 0 ) , ( 1 0 2 2 1 7 9 1 0 ) , ( 4 6 1 9 2 2 4 9 ) , ( 1 3 7 7 1 3 7 6 4 5 ) , ( 1 4 0 1 ) , ( 3 8 4 1 1 ) .
The torsion field K : = Q ( E [ 1380 ] ) K:=\Q(E[1380]) K : = Q ( E [ 1 3 8 0 ] ) is a degree-49244405760 49244405760 4 9 2 4 4 4 0 5 7 6 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 1380 Z ) \GL_2(\Z/1380\Z) GL 2 ( Z / 1 3 8 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
good
2 2 2
13915 = 5 ⋅ 1 1 2 ⋅ 23 13915 = 5 \cdot 11^{2} \cdot 23 1 3 9 1 5 = 5 ⋅ 1 1 2 ⋅ 2 3
3 3 3
split multiplicative
4 4 4
69575 = 5 2 ⋅ 1 1 2 ⋅ 23 69575 = 5^{2} \cdot 11^{2} \cdot 23 6 9 5 7 5 = 5 2 ⋅ 1 1 2 ⋅ 2 3
5 5 5
additive
10 10 1 0
8349 = 3 ⋅ 1 1 2 ⋅ 23 8349 = 3 \cdot 11^{2} \cdot 23 8 3 4 9 = 3 ⋅ 1 1 2 ⋅ 2 3
11 11 1 1
additive
62 62 6 2
1725 = 3 ⋅ 5 2 ⋅ 23 1725 = 3 \cdot 5^{2} \cdot 23 1 7 2 5 = 3 ⋅ 5 2 ⋅ 2 3
23 23 2 3
split multiplicative
24 24 2 4
9075 = 3 ⋅ 5 2 ⋅ 1 1 2 9075 = 3 \cdot 5^{2} \cdot 11^{2} 9 0 7 5 = 3 ⋅ 5 2 ⋅ 1 1 2
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 208725m
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
1725u2 , its twist by − 11 -11 − 1 1 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 115 ) \Q(\sqrt{115}) Q ( 1 1 5 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.12523500.4
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.