Properties

Label 208725m2
Conductor 208725208725
Discriminant 3.713×10123.713\times 10^{12}
j-invariant 20133309238116767 \frac{201333092381}{16767}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x373873x+7721462y^2+xy=x^3-73873x+7721462 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x373873xz2+7721462z3y^2z+xyz=x^3-73873xz^2+7721462z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x395739435x+360539749350y^2=x^3-95739435x+360539749350 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -73873, 7721462])
 
gp: E = ellinit([1, 0, 0, -73873, 7721462])
 
magma: E := EllipticCurve([1, 0, 0, -73873, 7721462]);
 
oscar: E = elliptic_curve([1, 0, 0, -73873, 7721462])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(131,479)(131, 479)0.502575987780650948181786697720.50257598778065094818178669772\infty
(623/4,623/8)(623/4, -623/8)0022

Integral points

(298,1964) \left(-298, 1964\right) , (298,1666) \left(-298, -1666\right) , (131,479) \left(131, 479\right) , (131,610) \left(131, -610\right) , (158,70) \left(158, -70\right) , (158,88) \left(158, -88\right) , (197,809) \left(197, 809\right) , (197,1006) \left(197, -1006\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  208725 208725  = 352112233 \cdot 5^{2} \cdot 11^{2} \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  37129704108753712970410875 = 3653116233^{6} \cdot 5^{3} \cdot 11^{6} \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  20133309238116767 \frac{201333092381}{16767}  = 36231586133^{-6} \cdot 23^{-1} \cdot 5861^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.45576933867632632703975828401.4557693386763263270397582840
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.14553777583138403864140333829-0.14553777583138403864140333829
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94917006869706160.9491700686970616
Szpiro ratio: σm\sigma_{m} ≈ 3.6937505809774483.693750580977448

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.502575987780650948181786697720.50257598778065094818178669772
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.751302008208271526505240615920.75130200820827152650524061592
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 48 48  = (23)2221 ( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.53103618676230546891242747474.5310361867623054689124274747
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.531036187L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7513020.50257648224.531036187\displaystyle 4.531036187 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.751302 \cdot 0.502576 \cdot 48}{2^2} \approx 4.531036187

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 208725.2.a.x

qq2+q3q4q62q7+3q8+q9q124q13+2q14q162q17q18+4q19+O(q20) q - q^{2} + q^{3} - q^{4} - q^{6} - 2 q^{7} + 3 q^{8} + q^{9} - q^{12} - 4 q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 691200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 66 I6I_{6} split multiplicative -1 1 6 6
55 22 IIIIII additive -1 2 3 0
1111 44 I0I_0^{*} additive -1 2 6 0
2323 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1036, 349, 345, 1036], [1, 2, 2, 5], [1, 4, 0, 1], [1108, 1, 1103, 0], [1022, 1, 179, 0], [461, 4, 922, 9], [1377, 4, 1376, 5], [1, 0, 4, 1], [3, 4, 8, 11]]
 
GL(2,Integers(1380)).subgroup(gens)
 
Gens := [[1036, 349, 345, 1036], [1, 2, 2, 5], [1, 4, 0, 1], [1108, 1, 1103, 0], [1022, 1, 179, 0], [461, 4, 922, 9], [1377, 4, 1376, 5], [1, 0, 4, 1], [3, 4, 8, 11]];
 
sub<GL(2,Integers(1380))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1380=223523 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 , index 1212, genus 00, and generators

(10363493451036),(1225),(1401),(1108111030),(102211790),(46149229),(1377413765),(1041),(34811)\left(\begin{array}{rr} 1036 & 349 \\ 345 & 1036 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1108 & 1 \\ 1103 & 0 \end{array}\right),\left(\begin{array}{rr} 1022 & 1 \\ 179 & 0 \end{array}\right),\left(\begin{array}{rr} 461 & 4 \\ 922 & 9 \end{array}\right),\left(\begin{array}{rr} 1377 & 4 \\ 1376 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1380])K:=\Q(E[1380]) is a degree-4924440576049244405760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1380Z)\GL_2(\Z/1380\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 13915=511223 13915 = 5 \cdot 11^{2} \cdot 23
33 split multiplicative 44 69575=5211223 69575 = 5^{2} \cdot 11^{2} \cdot 23
55 additive 1010 8349=311223 8349 = 3 \cdot 11^{2} \cdot 23
1111 additive 6262 1725=35223 1725 = 3 \cdot 5^{2} \cdot 23
2323 split multiplicative 2424 9075=352112 9075 = 3 \cdot 5^{2} \cdot 11^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 208725m consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 1725u2, its twist by 11-11.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(115)\Q(\sqrt{115}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.12523500.4 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.