sage: E = EllipticCurve([0, 0, 0, -6534, -215622])
gp: E = ellinit([0, 0, 0, -6534, -215622])
magma: E := EllipticCurve([0, 0, 0, -6534, -215622]);
oscar: E = elliptic_curve([0, 0, 0, -6534, -215622])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z
magma: MordellWeilGroup(E);
P | h^(P) | Order |
(819709/625,740699927/15625) | 11.254130087275329994397549021 | ∞ |
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor: |
N |
= |
209088 | = | 26⋅33⋅112 |
sage: E.conductor().factor()
|
Discriminant: |
Δ |
= |
−2231656650432 | = | −1⋅26⋅39⋅116 |
sage: E.discriminant().factor()
|
j-invariant: |
j |
= |
−13824 | = | −1⋅29⋅33 |
sage: E.j_invariant().factor()
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 1.1190754125081205843637862199 |
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | −1.2504050306721196109222355575 |
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 1.2262943855309167 |
|
Szpiro ratio: |
σm | ≈ | 3.1089079806535156 |
|
Analytic rank: |
ran | = | 1
|
|
Mordell-Weil rank: |
r | = | 1
|
gp: [lower,upper] = ellrank(E)
|
Regulator: |
Reg(E/Q) | ≈ | 11.254130087275329994397549021 |
G = E.gen \\ if available matdet(ellheightmatrix(E,G))
|
Real period: |
Ω | ≈ | 0.26440559095380664715232194181 |
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 2
= 1⋅1⋅2
|
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 1 |
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: |
L′(E,1) | ≈ | 5.9513098327940984095470629191 |
r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
5.951309833≈L′(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.264406⋅11.254130⋅2≈5.951309833
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
209088.2.a.fr
q+2q5−3q7−3q13−2q17−3q19+O(q20)
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction:
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[131, 0, 0, 263], [1, 0, 144, 1], [119, 0, 0, 263], [100, 33, 99, 199], [199, 0, 198, 199], [133, 132, 132, 133], [1, 132, 0, 1], [263, 66, 66, 263], [1, 0, 132, 1], [121, 144, 120, 121], [230, 187, 209, 230], [243, 220, 176, 243], [43, 187, 253, 230], [221, 0, 0, 221]]
GL(2,Integers(264)).subgroup(gens)
Gens := [[131, 0, 0, 263], [1, 0, 144, 1], [119, 0, 0, 263], [100, 33, 99, 199], [199, 0, 198, 199], [133, 132, 132, 133], [1, 132, 0, 1], [263, 66, 66, 263], [1, 0, 132, 1], [121, 144, 120, 121], [230, 187, 209, 230], [243, 220, 176, 243], [43, 187, 253, 230], [221, 0, 0, 221]];
sub<GL(2,Integers(264))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 264=23⋅3⋅11, index 24, genus 1, and generators
(13100263),(114401),(11900263),(1009933199),(1991980199),(133132132133),(101321),(2636666263),(113201),(121120144121),(230209187230),(243176220243),(43253187230),(22100221).
The torsion field K:=Q(E[264]) is a degree-40550400 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/264Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
additive |
2 |
3267=33⋅112 |
3 |
additive |
2 |
352=25⋅11 |
11 |
additive |
62 |
1728=26⋅33 |
This curve has no rational isogenies. Its isogeny class 209088dh
consists of this curve only.
The minimal quadratic twist of this elliptic curve is
864i1, its twist by 88.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
(which is trivial)
are as follows:
[K:Q] |
K |
E(K)tors |
Base change curve |
3 |
3.1.108.1 |
Z/2Z |
not in database
|
6 |
6.0.34992.1 |
Z/2Z⊕Z/2Z |
not in database
|
8 |
8.2.8393816014848.10 |
Z/3Z |
not in database
|
12 |
deg 12 |
Z/4Z |
not in database
|
16 |
deg 16 |
Z/3Z⊕Z/3Z |
not in database
|
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.