Show commands:
SageMath
E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 209814r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
209814.dj1 | 209814r1 | \([1, 0, 0, -88151, -6402747]\) | \(1771561/612\) | \(26169839635627908\) | \([2]\) | \(3317760\) | \(1.8520\) | \(\Gamma_0(N)\)-optimal |
209814.dj2 | 209814r2 | \([1, 0, 0, 261539, -44518957]\) | \(46268279/46818\) | \(-2001992732125534962\) | \([2]\) | \(6635520\) | \(2.1986\) |
Rank
sage: E.rank()
The elliptic curves in class 209814r have rank \(0\).
Complex multiplication
The elliptic curves in class 209814r do not have complex multiplication.Modular form 209814.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.