sage:E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 209814r
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
209814.dj1 |
209814r1 |
[1,0,0,−88151,−6402747] |
1771561/612 |
26169839635627908 |
[2] |
3317760 |
1.8520
|
Γ0(N)-optimal |
209814.dj2 |
209814r2 |
[1,0,0,261539,−44518957] |
46268279/46818 |
−2001992732125534962 |
[2] |
6635520 |
2.1986
|
|
sage:E.rank()
The elliptic curves in class 209814r have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
11 | 1 |
17 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
7 |
1+4T+7T2 |
1.7.e
|
13 |
1−4T+13T2 |
1.13.ae
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+23T2 |
1.23.a
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 209814r do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.