E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 21.a
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
21.a1 |
21a5 |
[1,0,0,−784,−8515] |
53297461115137/147 |
147 |
[2] |
4 |
0.074205
|
|
21.a2 |
21a2 |
[1,0,0,−49,−136] |
13027640977/21609 |
21609 |
[2,2] |
2 |
−0.27237
|
|
21.a3 |
21a3 |
[1,0,0,−39,90] |
6570725617/45927 |
45927 |
[8] |
2 |
−0.27237
|
|
21.a4 |
21a6 |
[1,0,0,−34,−217] |
−4354703137/17294403 |
−17294403 |
[2] |
4 |
0.074205
|
|
21.a5 |
21a1 |
[1,0,0,−4,−1] |
7189057/3969 |
3969 |
[2,4] |
1 |
−0.61894
|
Γ0(N)-optimal |
21.a6 |
21a4 |
[1,0,0,1,0] |
103823/63 |
−63 |
[4] |
2 |
−0.96552
|
|
The elliptic curves in class 21.a have
rank 0.
The elliptic curves in class 21.a do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎜⎜⎜⎜⎛128448214224841824428148422412844821⎠⎟⎟⎟⎟⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.