Properties

Label 210d1
Conductor 210210
Discriminant 16801680
j-invariant 48268091680 \frac{4826809}{1680}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x23x3y^2+xy=x^3+x^2-3x-3 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z3xz23z3y^2z+xyz=x^3+x^2z-3xz^2-3z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x34563x74898y^2=x^3-4563x-74898 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -3, -3])
 
gp: E = ellinit([1, 1, 0, -3, -3])
 
magma: E := EllipticCurve([1, 1, 0, -3, -3]);
 
oscar: E = elliptic_curve([1, 1, 0, -3, -3])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2,1)(2, 1)0.532646580955744561927467455410.53264658095574456192746745541\infty
(2,1)(-2, 1)0022

Integral points

(2,1) \left(-2, 1\right) , (1,1) \left(-1, 1\right) , (1,0) \left(-1, 0\right) , (2,1) \left(2, 1\right) , (2,3) \left(2, -3\right) , (7,16) \left(7, 16\right) , (7,23) \left(7, -23\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  210 210  = 23572 \cdot 3 \cdot 5 \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  16801680 = 243572^{4} \cdot 3 \cdot 5 \cdot 7
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  48268091680 \frac{4826809}{1680}  = 243151711362^{-4} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{6}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.67956403247844886584824604001-0.67956403247844886584824604001
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.67956403247844886584824604001-0.67956403247844886584824604001
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01602571812826731.0160257181282673
Szpiro ratio: σm\sigma_{m} ≈ 2.8781347777953232.878134777795323

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.532646580955744561927467455410.53264658095574456192746745541
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.58460202634618433075591885523.5846020263461843307559188552
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 2111 2\cdot1\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 0.954663006710164436590637545110.95466300671016443659063754511
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.954663007L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.5846020.5326472220.954663007\displaystyle 0.954663007 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.584602 \cdot 0.532647 \cdot 2}{2^2} \approx 0.954663007

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   210.2.a.a

qq2q3+q4q5+q6q7q8+q9+q104q11q122q13+q14+q15+q166q17q18+O(q20) q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 4 q^{11} - q^{12} - 2 q^{13} + q^{14} + q^{15} + q^{16} - 6 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 16
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I4I_{4} nonsplit multiplicative 1 1 4 4
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.12.0.12

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[568, 3, 565, 2], [1, 0, 8, 1], [113, 108, 110, 527], [833, 8, 832, 9], [1, 8, 0, 1], [1, 4, 4, 17], [508, 1, 191, 6], [323, 318, 530, 107], [7, 6, 834, 835], [124, 1, 503, 6]]
 
GL(2,Integers(840)).subgroup(gens)
 
Gens := [[568, 3, 565, 2], [1, 0, 8, 1], [113, 108, 110, 527], [833, 8, 832, 9], [1, 8, 0, 1], [1, 4, 4, 17], [508, 1, 191, 6], [323, 318, 530, 107], [7, 6, 834, 835], [124, 1, 503, 6]];
 
sub<GL(2,Integers(840))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 , index 4848, genus 00, and generators

(56835652),(1081),(113108110527),(83388329),(1801),(14417),(50811916),(323318530107),(76834835),(12415036)\left(\begin{array}{rr} 568 & 3 \\ 565 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 108 \\ 110 & 527 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 508 & 1 \\ 191 & 6 \end{array}\right),\left(\begin{array}{rr} 323 & 318 \\ 530 & 107 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 124 & 1 \\ 503 & 6 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[840])K:=\Q(E[840]) is a degree-14863564801486356480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/840Z)\GL_2(\Z/840\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 105=357 105 = 3 \cdot 5 \cdot 7
33 nonsplit multiplicative 44 70=257 70 = 2 \cdot 5 \cdot 7
55 nonsplit multiplicative 66 42=237 42 = 2 \cdot 3 \cdot 7
77 nonsplit multiplicative 88 30=235 30 = 2 \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 210d consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(105)\Q(\sqrt{105}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(3)\Q(\sqrt{-3}) Z/4Z\Z/4\Z 2.0.3.1-14700.2-c2
22 Q(35)\Q(\sqrt{-35}) Z/4Z\Z/4\Z not in database
44 Q(3,35)\Q(\sqrt{-3}, \sqrt{-35}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.343064484000000.12 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.3657830400.10 Z/8Z\Z/8\Z not in database
88 8.0.67765824000000.11 Z/8Z\Z/8\Z not in database
88 8.2.4253299470000.4 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit nonsplit nonsplit ord ord ord ss ord ord ord ord ord ord ord
λ\lambda-invariant(s) 2 1 1 1 1 1 1 1,1 1 1 1 1 3 1 1
μ\mu-invariant(s) 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.