Properties

Label 210e2
Conductor 210210
Discriminant 5143824000051438240000
j-invariant 13548786915888151438240000 \frac{135487869158881}{51438240000}
CM no
Rank 00
Torsion structure Z/2ZZ/8Z\Z/{2}\Z \oplus \Z/{8}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

This is the minimal-conductor curve with torsion (Z/2Z)×(Z/8Z)(\Z/2\Z) \times (\Z/8\Z).

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x31070x+7812y^2+xy=x^3-1070x+7812 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x31070xz2+7812z3y^2z+xyz=x^3-1070xz^2+7812z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31386747x+368636886y^2=x^3-1386747x+368636886 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -1070, 7812])
 
gp: E = ellinit([1, 0, 0, -1070, 7812])
 
magma: E := EllipticCurve([1, 0, 0, -1070, 7812]);
 
oscar: E = elliptic_curve([1, 0, 0, -1070, 7812])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/8Z\Z/{2}\Z \oplus \Z/{8}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(36,18)(-36, 18)0022
(4,58)(4, 58)0088

Integral points

(36,18) \left(-36, 18\right) , (26,148) \left(-26, 148\right) , (26,122) \left(-26, -122\right) , (8,130) \left(-8, 130\right) , (8,122) \left(-8, -122\right) , (4,58) \left(4, 58\right) , (4,62) \left(4, -62\right) , (28,14) \left(28, -14\right) , (34,88) \left(34, 88\right) , (34,122) \left(34, -122\right) , (64,418) \left(64, 418\right) , (64,482) \left(64, -482\right) , (244,3658) \left(244, 3658\right) , (244,3902) \left(244, -3902\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  210 210  = 23572 \cdot 3 \cdot 5 \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  5143824000051438240000 = 283854722^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13548786915888151438240000 \frac{135487869158881}{51438240000}  = 283854725136132^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-2} \cdot 51361^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.754708646055645082827190065220.75470864605564508282719006522
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.754708646055645082827190065220.75470864605564508282719006522
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01909868855799051.0190986885579905
Szpiro ratio: σm\sigma_{m} ≈ 6.0855150263588726.085515026358872

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.02593301001953326316771318861.0259330100195332631677131886
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 512 512  = 2323222 2^{3}\cdot2^{3}\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 1616
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.05186602003906652633542637712.0518660200390665263354263771
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.051866020L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.0259331.0000005121622.051866020\displaystyle 2.051866020 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.025933 \cdot 1.000000 \cdot 512}{16^2} \approx 2.051866020

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   210.2.a.e

q+q2+q3+q4+q5+q6q7+q8+q9+q104q11+q122q13q14+q15+q16+2q17+q18+4q19+O(q20) q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - q^{14} + q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 256
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 88 I8I_{8} split multiplicative -1 1 8 8
33 88 I8I_{8} split multiplicative -1 1 8 8
55 44 I4I_{4} split multiplicative -1 1 4 4
77 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.96.0.40

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[15, 16, 74, 289], [1121, 8, 0, 1], [1, 16, 0, 1], [1353, 16, 1076, 121], [13, 8, 320, 617], [241, 16, 1446, 97], [1, 0, 16, 1], [1, 16, 4, 65], [1665, 16, 1664, 17]]
 
GL(2,Integers(1680)).subgroup(gens)
 
Gens := [[15, 16, 74, 289], [1121, 8, 0, 1], [1, 16, 0, 1], [1353, 16, 1076, 121], [13, 8, 320, 617], [241, 16, 1446, 97], [1, 0, 16, 1], [1, 16, 4, 65], [1665, 16, 1664, 17]];
 
sub<GL(2,Integers(1680))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1680=24357 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 , index 768768, genus 1313, and generators

(151674289),(1121801),(11601),(1353161076121),(138320617),(24116144697),(10161),(116465),(166516166417)\left(\begin{array}{rr} 15 & 16 \\ 74 & 289 \end{array}\right),\left(\begin{array}{rr} 1121 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1353 & 16 \\ 1076 & 121 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 320 & 617 \end{array}\right),\left(\begin{array}{rr} 241 & 16 \\ 1446 & 97 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1665 & 16 \\ 1664 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1680])K:=\Q(E[1680]) is a degree-14863564801486356480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1680Z)\GL_2(\Z/1680\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 1 1
33 split multiplicative 44 70=257 70 = 2 \cdot 5 \cdot 7
55 split multiplicative 66 42=237 42 = 2 \cdot 3 \cdot 7
77 nonsplit multiplicative 88 30=235 30 = 2 \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 210e consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/8Z\cong \Z/{2}\Z \oplus \Z/{8}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(i,7)\Q(i, \sqrt{7}) Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
44 Q(6,10)\Q(\sqrt{-6}, \sqrt{10}) Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
44 Q(6,70)\Q(\sqrt{6}, \sqrt{70}) Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 8.2.4253299470000.8 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1616 deg 16 Z/8ZZ/8Z\Z/8\Z \oplus \Z/8\Z not in database
1616 16.0.5951500145509072896.2 Z/4ZZ/16Z\Z/4\Z \oplus \Z/16\Z not in database
1616 16.0.63456228123711897600000000.20 Z/4ZZ/16Z\Z/4\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/32Z\Z/2\Z \oplus \Z/32\Z not in database
1616 deg 16 Z/2ZZ/32Z\Z/2\Z \oplus \Z/32\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7
Reduction type split split split nonsplit
λ\lambda-invariant(s) 2 5 1 0
μ\mu-invariant(s) 0 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.

Additional information

This is the curve of minimal conductor and torsion (Z/2Z)×(Z/8Z)(\Z/2\Z) \times (\Z/8\Z). Every elliptic curve E/QE/\Q with this torsion group must have conductor divisible by 210=2357210 = 2 \cdot 3 \cdot 5 \cdot 7 (for instance, if EE had good reduction at 77 then the reduction mod 77 would have at least 1616 points, which exceeds the Weil bound (7+1)2<14(\sqrt7+1)^2 < 14.