y 2 + x y = x 3 − 15070 x + 710612 y^2+xy=x^3-15070x+710612 y 2 + x y = x 3 − 1 5 0 7 0 x + 7 1 0 6 1 2
(homogenize , simplify )
y 2 z + x y z = x 3 − 15070 x z 2 + 710612 z 3 y^2z+xyz=x^3-15070xz^2+710612z^3 y 2 z + x y z = x 3 − 1 5 0 7 0 x z 2 + 7 1 0 6 1 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 19530747 x + 33212905686 y^2=x^3-19530747x+33212905686 y 2 = x 3 − 1 9 5 3 0 7 4 7 x + 3 3 2 1 2 9 0 5 6 8 6
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 0, -15070, 710612])
gp: E = ellinit([1, 0, 0, -15070, 710612])
magma: E := EllipticCurve([1, 0, 0, -15070, 710612]);
oscar: E = elliptic_curve([1, 0, 0, -15070, 710612])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z / 8 Z \Z/{8}\Z Z / 8 Z
magma: MordellWeilGroup(E);
( 74 , 8 ) \left(74, 8\right) ( 7 4 , 8 ) , ( 74 , − 82 ) \left(74, -82\right) ( 7 4 , − 8 2 ) , ( 92 , 278 ) \left(92, 278\right) ( 9 2 , 2 7 8 ) , ( 92 , − 370 ) \left(92, -370\right) ( 9 2 , − 3 7 0 ) , ( 254 , 3518 ) \left(254, 3518\right) ( 2 5 4 , 3 5 1 8 ) , ( 254 , − 3772 ) \left(254, -3772\right) ( 2 5 4 , − 3 7 7 2 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
210 210 2 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 2 \cdot 3 \cdot 5 \cdot 7 2 ⋅ 3 ⋅ 5 ⋅ 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
120530818800 120530818800 1 2 0 5 3 0 8 1 8 8 0 0 = 2 4 ⋅ 3 16 ⋅ 5 2 ⋅ 7 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 7 2 4 ⋅ 3 1 6 ⋅ 5 2 ⋅ 7
sage: E.discriminant().factor()
j-invariant :
j j j
=
378499465220294881 120530818800 \frac{378499465220294881}{120530818800} 1 2 0 5 3 0 8 1 8 8 0 0 3 7 8 4 9 9 4 6 5 2 2 0 2 9 4 8 8 1 = 2 − 4 ⋅ 3 − 16 ⋅ 5 − 2 ⋅ 7 − 1 ⋅ 72336 1 3 2^{-4} \cdot 3^{-16} \cdot 5^{-2} \cdot 7^{-1} \cdot 723361^{3} 2 − 4 ⋅ 3 − 1 6 ⋅ 5 − 2 ⋅ 7 − 1 ⋅ 7 2 3 3 6 1 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.1012822363356177375358061260 1.1012822363356177375358061260 1 . 1 0 1 2 8 2 2 3 6 3 3 5 6 1 7 7 3 7 5 3 5 8 0 6 1 2 6 0
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 1.1012822363356177375358061260 1.1012822363356177375358061260 1 . 1 0 1 2 8 2 2 3 6 3 3 5 6 1 7 7 3 7 5 3 5 8 0 6 1 2 6 0
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0358020223701003 1.0358020223701003 1 . 0 3 5 8 0 2 0 2 2 3 7 0 1 0 0 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 7.569511333441256 7.569511333441256 7 . 5 6 9 5 1 1 3 3 3 4 4 1 2 5 6
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
Mordell-Weil rank :
r r r = 0 0 0
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 1.0259330100195332631677131886 1.0259330100195332631677131886 1 . 0 2 5 9 3 3 0 1 0 0 1 9 5 3 3 2 6 3 1 6 7 7 1 3 1 8 8 6
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 128 128 1 2 8
= 2 2 ⋅ 2 4 ⋅ 2 ⋅ 1 2^{2}\cdot2^{4}\cdot2\cdot1 2 2 ⋅ 2 4 ⋅ 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 8 8 8
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 2.0518660200390665263354263771 2.0518660200390665263354263771 2 . 0 5 1 8 6 6 0 2 0 0 3 9 0 6 6 5 2 6 3 3 5 4 2 6 3 7 7 1
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.051866020 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.025933 ⋅ 1.000000 ⋅ 128 8 2 ≈ 2.051866020 \displaystyle 2.051866020 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.025933 \cdot 1.000000 \cdot 128}{8^2} \approx 2.051866020 2 . 0 5 1 8 6 6 0 2 0 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 8 2 1 ⋅ 1 . 0 2 5 9 3 3 ⋅ 1 . 0 0 0 0 0 0 ⋅ 1 2 8 ≈ 2 . 0 5 1 8 6 6 0 2 0
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
210.2.a.e
q + q 2 + q 3 + q 4 + q 5 + q 6 − q 7 + q 8 + q 9 + q 10 − 4 q 11 + q 12 − 2 q 13 − q 14 + q 15 + q 16 + 2 q 17 + q 18 + 4 q 19 + O ( q 20 ) q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - q^{14} + q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20}) q + q 2 + q 3 + q 4 + q 5 + q 6 − q 7 + q 8 + q 9 + q 1 0 − 4 q 1 1 + q 1 2 − 2 q 1 3 − q 1 4 + q 1 5 + q 1 6 + 2 q 1 7 + q 1 8 + 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1121, 32, 1136, 513], [1, 0, 32, 1], [242, 19, 975, 2318], [992, 29, 907, 2562], [1, 32, 0, 1], [5, 28, 68, 381], [2121, 32, 1804, 2909], [2711, 26, 2118, 875], [3329, 32, 3328, 33], [23, 18, 798, 1355]]
GL(2,Integers(3360)).subgroup(gens)
Gens := [[1121, 32, 1136, 513], [1, 0, 32, 1], [242, 19, 975, 2318], [992, 29, 907, 2562], [1, 32, 0, 1], [5, 28, 68, 381], [2121, 32, 1804, 2909], [2711, 26, 2118, 875], [3329, 32, 3328, 33], [23, 18, 798, 1355]];
sub<GL(2,Integers(3360))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 3360 = 2 5 ⋅ 3 ⋅ 5 ⋅ 7 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 3 3 6 0 = 2 5 ⋅ 3 ⋅ 5 ⋅ 7 , index 768 768 7 6 8 , genus 13 13 1 3 , and generators
( 1121 32 1136 513 ) , ( 1 0 32 1 ) , ( 242 19 975 2318 ) , ( 992 29 907 2562 ) , ( 1 32 0 1 ) , ( 5 28 68 381 ) , ( 2121 32 1804 2909 ) , ( 2711 26 2118 875 ) , ( 3329 32 3328 33 ) , ( 23 18 798 1355 ) \left(\begin{array}{rr}
1121 & 32 \\
1136 & 513
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
32 & 1
\end{array}\right),\left(\begin{array}{rr}
242 & 19 \\
975 & 2318
\end{array}\right),\left(\begin{array}{rr}
992 & 29 \\
907 & 2562
\end{array}\right),\left(\begin{array}{rr}
1 & 32 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
5 & 28 \\
68 & 381
\end{array}\right),\left(\begin{array}{rr}
2121 & 32 \\
1804 & 2909
\end{array}\right),\left(\begin{array}{rr}
2711 & 26 \\
2118 & 875
\end{array}\right),\left(\begin{array}{rr}
3329 & 32 \\
3328 & 33
\end{array}\right),\left(\begin{array}{rr}
23 & 18 \\
798 & 1355
\end{array}\right) ( 1 1 2 1 1 1 3 6 3 2 5 1 3 ) , ( 1 3 2 0 1 ) , ( 2 4 2 9 7 5 1 9 2 3 1 8 ) , ( 9 9 2 9 0 7 2 9 2 5 6 2 ) , ( 1 0 3 2 1 ) , ( 5 6 8 2 8 3 8 1 ) , ( 2 1 2 1 1 8 0 4 3 2 2 9 0 9 ) , ( 2 7 1 1 2 1 1 8 2 6 8 7 5 ) , ( 3 3 2 9 3 3 2 8 3 2 3 3 ) , ( 2 3 7 9 8 1 8 1 3 5 5 ) .
The torsion field K : = Q ( E [ 3360 ] ) K:=\Q(E[3360]) K : = Q ( E [ 3 3 6 0 ] ) is a degree-23781703680 23781703680 2 3 7 8 1 7 0 3 6 8 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 3360 Z ) \GL_2(\Z/3360\Z) GL 2 ( Z / 3 3 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
7 7 7
3 3 3
split multiplicative
4 4 4
70 = 2 ⋅ 5 ⋅ 7 70 = 2 \cdot 5 \cdot 7 7 0 = 2 ⋅ 5 ⋅ 7
5 5 5
split multiplicative
6 6 6
42 = 2 ⋅ 3 ⋅ 7 42 = 2 \cdot 3 \cdot 7 4 2 = 2 ⋅ 3 ⋅ 7
7 7 7
nonsplit multiplicative
8 8 8
30 = 2 ⋅ 3 ⋅ 5 30 = 2 \cdot 3 \cdot 5 3 0 = 2 ⋅ 3 ⋅ 5
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 4, 8 and 16.
Its isogeny class 210e
consists of 8 curves linked by isogenies of
degrees dividing 16.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 8 Z \cong \Z/{8}\Z ≅ Z / 8 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 7 ) \Q(\sqrt{7}) Q ( 7 )
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
2 2 2
Q ( 70 ) \Q(\sqrt{70}) Q ( 7 0 )
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
2 2 2
Q ( 10 ) \Q(\sqrt{10}) Q ( 1 0 )
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
4 4 4
Q ( 7 , 10 ) \Q(\sqrt{7}, \sqrt{10}) Q ( 7 , 1 0 )
Z / 2 Z ⊕ Z / 16 Z \Z/2\Z \oplus \Z/16\Z Z / 2 Z ⊕ Z / 1 6 Z
not in database
8 8 8
8.0.4818903040000.23
Z / 4 Z ⊕ Z / 8 Z \Z/4\Z \oplus \Z/8\Z Z / 4 Z ⊕ Z / 8 Z
not in database
8 8 8
8.0.30118144.2
Z / 2 Z ⊕ Z / 16 Z \Z/2\Z \oplus \Z/16\Z Z / 2 Z ⊕ Z / 1 6 Z
not in database
8 8 8
deg 8
Z / 32 Z \Z/32\Z Z / 3 2 Z
not in database
8 8 8
deg 8
Z / 32 Z \Z/32\Z Z / 3 2 Z
not in database
8 8 8
8.2.4253299470000.8
Z / 24 Z \Z/24\Z Z / 2 4 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 16 Z \Z/4\Z \oplus \Z/16\Z Z / 4 Z ⊕ Z / 1 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 32 Z \Z/2\Z \oplus \Z/32\Z Z / 2 Z ⊕ Z / 3 2 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 32 Z \Z/2\Z \oplus \Z/32\Z Z / 2 Z ⊕ Z / 3 2 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 24 Z \Z/2\Z \oplus \Z/24\Z Z / 2 Z ⊕ Z / 2 4 Z
not in database
16 16 1 6
deg 16
Z / 48 Z \Z/48\Z Z / 4 8 Z
not in database
16 16 1 6
deg 16
Z / 48 Z \Z/48\Z Z / 4 8 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ \lambda λ and μ \mu μ -invariants for primes p ≥ 3 p\ge
3 p ≥ 3 of good reduction are zero.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .