Properties

Label 21175q2
Conductor 2117521175
Discriminant 4.335×1018-4.335\times 10^{18}
j-invariant 13278380032156590819 -\frac{13278380032}{156590819}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3x2149233x102546632y^2+y=x^3-x^2-149233x-102546632 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3x2z149233xz2102546632z3y^2z+yz^2=x^3-x^2z-149233xz^2-102546632z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3193406400x4786736526000y^2=x^3-193406400x-4786736526000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 1, -149233, -102546632])
 
gp: E = ellinit([0, -1, 1, -149233, -102546632])
 
magma: E := EllipticCurve([0, -1, 1, -149233, -102546632]);
 
oscar: E = elliptic_curve([0, -1, 1, -149233, -102546632])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(598,4658)(598, 4658)1.02596184904907677178448969251.0259618490490767717844896925\infty

Integral points

(598,4658) \left(598, 4658\right) , (598,4659) \left(598, -4659\right) , (8606,797450) \left(8606, 797450\right) , (8606,797451) \left(8606, -797451\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  21175 21175  = 5271125^{2} \cdot 7 \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  4334534185913421875-4334534185913421875 = 15676119-1 \cdot 5^{6} \cdot 7^{6} \cdot 11^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13278380032156590819 -\frac{13278380032}{156590819}  = 121876113373-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.25797306756488616855389302082.2579730675648861685538930208
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.254306474948650709222541565200.25430647494865070922254156520
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06521683961209131.0652168396120913
Szpiro ratio: σm\sigma_{m} ≈ 5.0615315066104455.061531506610445

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.02596184904907677178448969251.0259618490490767717844896925
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.104697099748792572915025495350.10469709974879257291502549535
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 1(23)22 1\cdot( 2 \cdot 3 )\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.57796552116032462310967175932.5779655211603246231096717593
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.577965521L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1046971.02596224122.577965521\displaystyle 2.577965521 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.104697 \cdot 1.025962 \cdot 24}{1^2} \approx 2.577965521

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   21175.2.a.t

qq32q4+q72q9+2q124q13+4q166q172q19+O(q20) q - q^{3} - 2 q^{4} + q^{7} - 2 q^{9} + 2 q^{12} - 4 q^{13} + 4 q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 259200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
55 11 I0I_0^{*} additive 1 2 6 0
77 66 I6I_{6} split multiplicative -1 1 6 6
1111 44 I3I_{3}^{*} additive -1 2 9 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 3.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 18, 0, 1], [1, 2790, 0, 1541], [4409, 4140, 3645, 2609], [1, 9, 9, 82], [6913, 18, 6912, 19], [5551, 2790, 1170, 4621], [5543, 0, 0, 6929], [1, 6, 6, 37], [1, 0, 18, 1], [1, 12, 0, 1]]
 
GL(2,Integers(6930)).subgroup(gens)
 
Gens := [[1, 18, 0, 1], [1, 2790, 0, 1541], [4409, 4140, 3645, 2609], [1, 9, 9, 82], [6913, 18, 6912, 19], [5551, 2790, 1170, 4621], [5543, 0, 0, 6929], [1, 6, 6, 37], [1, 0, 18, 1], [1, 12, 0, 1]];
 
sub<GL(2,Integers(6930))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6930=2325711 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 , index 144144, genus 33, and generators

(11801),(1279001541),(4409414036452609),(19982),(691318691219),(5551279011704621),(5543006929),(16637),(10181),(11201)\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2790 \\ 0 & 1541 \end{array}\right),\left(\begin{array}{rr} 4409 & 4140 \\ 3645 & 2609 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 6913 & 18 \\ 6912 & 19 \end{array}\right),\left(\begin{array}{rr} 5551 & 2790 \\ 1170 & 4621 \end{array}\right),\left(\begin{array}{rr} 5543 & 0 \\ 0 & 6929 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6930])K:=\Q(E[6930]) is a degree-20692869120002069286912000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6930Z)\GL_2(\Z/6930\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 3025=52112 3025 = 5^{2} \cdot 11^{2}
33 good 22 3025=52112 3025 = 5^{2} \cdot 11^{2}
55 additive 1414 847=7112 847 = 7 \cdot 11^{2}
77 split multiplicative 88 3025=52112 3025 = 5^{2} \cdot 11^{2}
1111 additive 7272 175=527 175 = 5^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 21175q consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 77b1, its twist by 55-55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(165)\Q(\sqrt{165}) Z/3Z\Z/3\Z not in database
22 Q(55)\Q(\sqrt{-55}) Z/3Z\Z/3\Z not in database
33 3.1.44.1 Z/2Z\Z/2\Z not in database
44 Q(3,55)\Q(\sqrt{-3}, \sqrt{-55}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.71874000.1 Z/6Z\Z/6\Z not in database
66 6.0.2662000.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.0.5165871876000000.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 12.0.5165871876000000.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 12.0.7086244000000.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.861133875593864713958539837323964370970703125.1 Z/9Z\Z/9\Z not in database
1818 18.0.24695809737281383266032878318359375.1 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord add split add ord ord ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) 3,4 1 - 2 - 1 1 1 1 1 1 3 1 1 1,1
μ\mu-invariant(s) 0,0 0 - 0 - 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.