Properties

Label 212121.y
Number of curves 22
Conductor 212121212121
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 212121.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
212121.y1 212121y1 [1,1,0,30585,1262008][1, -1, 0, -30585, 1262008] 996105067803/362467651996105067803/362467651 11513868301574731151386830157473 [2][2] 14376961437696 1.59041.5904 Γ0(N)\Gamma_0(N)-optimal
212121.y2 212121y2 [1,1,0,93630,8839123][1, -1, 0, 93630, 8839123] 28576837742517/2721939028928576837742517/27219390289 86463019298985147-86463019298985147 [2][2] 28753922875392 1.93701.9370  

Rank

sage: E.rank()
 

The elliptic curves in class 212121.y have rank 00.

Complex multiplication

The elliptic curves in class 212121.y do not have complex multiplication.

Modular form 212121.2.a.y

sage: E.q_eigenform(10)
 
q+q2q4+4q53q8+4q10+6q11q13q16+4q174q19+O(q20)q + q^{2} - q^{4} + 4 q^{5} - 3 q^{8} + 4 q^{10} + 6 q^{11} - q^{13} - q^{16} + 4 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.