Properties

Label 212121.y1
Conductor 212121212121
Discriminant 1.151×10151.151\times 10^{15}
j-invariant 996105067803362467651 \frac{996105067803}{362467651}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x230585x+1262008y^2+xy=x^3-x^2-30585x+1262008 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z30585xz2+1262008z3y^2z+xyz=x^3-x^2z-30585xz^2+1262008z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3489363x+80279150y^2=x^3-489363x+80279150 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -30585, 1262008])
 
gp: E = ellinit([1, -1, 0, -30585, 1262008])
 
magma: E := EllipticCurve([1, -1, 0, -30585, 1262008]);
 
oscar: E = elliptic_curve([1, -1, 0, -30585, 1262008])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(44,22)(44, -22)0022

Integral points

(44,22) \left(44, -22\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  212121 212121  = 327213373^{2} \cdot 7^{2} \cdot 13 \cdot 37
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  11513868301574731151386830157473 = 3379134373^{3} \cdot 7^{9} \cdot 13^{4} \cdot 37
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  996105067803362467651 \frac{996105067803}{362467651}  = 3373134371332933^{3} \cdot 7^{-3} \cdot 13^{-4} \cdot 37^{-1} \cdot 3329^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.59042948609705996092948364301.5904294860970599609294836430
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.342821339402375885527995962050.34282133940237588552799596205
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.90162419434366750.9016241943436675
Szpiro ratio: σm\sigma_{m} ≈ 3.47319376066727653.4731937606672765

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.446783733096727847237754639150.44678373309672784723775463915
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22221 2\cdot2^{2}\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 7.14853972954764555580407422637.1485397295476455558040742263
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  44 = 222^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.148539730L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor240.4467841.00000016227.148539730\displaystyle 7.148539730 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.446784 \cdot 1.000000 \cdot 16}{2^2} \approx 7.148539730

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 212121.2.a.y

q+q2q4+4q53q8+4q10+6q11q13q16+4q174q19+O(q20) q + q^{2} - q^{4} + 4 q^{5} - 3 q^{8} + 4 q^{10} + 6 q^{11} - q^{13} - q^{16} + 4 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1437696
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 IIIIII additive 1 2 3 0
77 44 I3I_{3}^{*} additive -1 2 9 3
1313 22 I4I_{4} nonsplit multiplicative 1 1 4 4
3737 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1262, 1, 923, 0], [1, 2, 2, 5], [2333, 778, 776, 2331], [3105, 4, 3104, 5], [1, 4, 0, 1], [1040, 1, 2071, 0], [2666, 1, 1775, 0], [1, 0, 4, 1], [3, 4, 8, 11]]
 
GL(2,Integers(3108)).subgroup(gens)
 
Gens := [[1262, 1, 923, 0], [1, 2, 2, 5], [2333, 778, 776, 2331], [3105, 4, 3104, 5], [1, 4, 0, 1], [1040, 1, 2071, 0], [2666, 1, 1775, 0], [1, 0, 4, 1], [3, 4, 8, 11]];
 
sub<GL(2,Integers(3108))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3108=223737 3108 = 2^{2} \cdot 3 \cdot 7 \cdot 37 , index 1212, genus 00, and generators

(126219230),(1225),(23337787762331),(3105431045),(1401),(1040120710),(2666117750),(1041),(34811)\left(\begin{array}{rr} 1262 & 1 \\ 923 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 2333 & 778 \\ 776 & 2331 \end{array}\right),\left(\begin{array}{rr} 3105 & 4 \\ 3104 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1040 & 1 \\ 2071 & 0 \end{array}\right),\left(\begin{array}{rr} 2666 & 1 \\ 1775 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3108])K:=\Q(E[3108]) is a degree-14106266173441410626617344 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3108Z)\GL_2(\Z/3108\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 5439=37237 5439 = 3 \cdot 7^{2} \cdot 37
33 additive 66 23569=721337 23569 = 7^{2} \cdot 13 \cdot 37
77 additive 3232 4329=321337 4329 = 3^{2} \cdot 13 \cdot 37
1313 nonsplit multiplicative 1414 16317=327237 16317 = 3^{2} \cdot 7^{2} \cdot 37
3737 nonsplit multiplicative 3838 5733=327213 5733 = 3^{2} \cdot 7^{2} \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 212121.y consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 30303.d1, its twist by 2121.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(777)\Q(\sqrt{777}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.6993.1 Z/4Z\Z/4\Z not in database
88 8.0.3280398348969.6 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.