Properties

Label 21315.p
Number of curves $4$
Conductor $21315$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 21315.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21315.p1 21315c4 \([1, 1, 0, -12618, 532323]\) \(1888690601881/31827645\) \(3744490606605\) \([2]\) \(55296\) \(1.2106\)  
21315.p2 21315c2 \([1, 1, 0, -1593, -12312]\) \(3803721481/1703025\) \(200359188225\) \([2, 2]\) \(27648\) \(0.86403\)  
21315.p3 21315c1 \([1, 1, 0, -1348, -19613]\) \(2305199161/1305\) \(153531945\) \([2]\) \(13824\) \(0.51746\) \(\Gamma_0(N)\)-optimal
21315.p4 21315c3 \([1, 1, 0, 5512, -84783]\) \(157376536199/118918125\) \(-13990598488125\) \([2]\) \(55296\) \(1.2106\)  

Rank

sage: E.rank()
 

The elliptic curves in class 21315.p have rank \(1\).

Complex multiplication

The elliptic curves in class 21315.p do not have complex multiplication.

Modular form 21315.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - 3 q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - 6 q^{13} + q^{15} - q^{16} - 6 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.