Properties

Label 2175h1
Conductor 21752175
Discriminant 8.602×1012-8.602\times 10^{12}
j-invariant 53838872576550546875 \frac{53838872576}{550546875}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2+1967x136406y^2+y=x^3+x^2+1967x-136406 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z+1967xz2136406z3y^2z+yz^2=x^3+x^2z+1967xz^2-136406z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+2548800x6394734000y^2=x^3+2548800x-6394734000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, 1967, -136406])
 
gp: E = ellinit([0, 1, 1, 1967, -136406])
 
magma: E := EllipticCurve([0, 1, 1, 1967, -136406]);
 
oscar: E = elliptic_curve([0, 1, 1, 1967, -136406])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(278,4687)(278, 4687)0.436544531697644148799940070590.43654453169764414879994007059\infty

Integral points

(68,562) \left(68, 562\right) , (68,563) \left(68, -563\right) , (278,4687) \left(278, 4687\right) , (278,4688) \left(278, -4688\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  2175 2175  = 352293 \cdot 5^{2} \cdot 29
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  8602294921875-8602294921875 = 13551329-1 \cdot 3^{5} \cdot 5^{13} \cdot 29
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  53838872576550546875 \frac{53838872576}{550546875}  = 21835572915932^{18} \cdot 3^{-5} \cdot 5^{-7} \cdot 29^{-1} \cdot 59^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.16301423324077013961520091951.1630142332407701396152009195
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.358295277023719952314821252890.35829527702371995231482125289
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03969399191207651.0396939919120765
Szpiro ratio: σm\sigma_{m} ≈ 4.8380687775146534.838068777514653

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.436544531697644148799940070590.43654453169764414879994007059
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.362017852675246364571521994430.36201785267524636457152199443
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 20 20  = 5221 5\cdot2^{2}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.16073827924604312422668884683.1607382792460431242266888468
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.160738279L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3620180.43654520123.160738279\displaystyle 3.160738279 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.362018 \cdot 0.436545 \cdot 20}{1^2} \approx 3.160738279

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2175.2.a.g

q+q32q4+2q7+q9+q112q126q13+4q164q172q19+O(q20) q + q^{3} - 2 q^{4} + 2 q^{7} + q^{9} + q^{11} - 2 q^{12} - 6 q^{13} + 4 q^{16} - 4 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3360
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 55 I5I_{5} split multiplicative -1 1 5 5
55 44 I7I_{7}^{*} additive 1 2 13 7
2929 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[869, 2, 868, 3], [1, 1, 869, 0], [697, 2, 697, 3], [581, 2, 581, 3], [1, 0, 2, 1], [1, 2, 0, 1], [31, 2, 31, 3]]
 
GL(2,Integers(870)).subgroup(gens)
 
Gens := [[869, 2, 868, 3], [1, 1, 869, 0], [697, 2, 697, 3], [581, 2, 581, 3], [1, 0, 2, 1], [1, 2, 0, 1], [31, 2, 31, 3]];
 
sub<GL(2,Integers(870))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 870=23529 870 = 2 \cdot 3 \cdot 5 \cdot 29 , index 22, genus 00, and generators

(86928683),(118690),(69726973),(58125813),(1021),(1201),(312313)\left(\begin{array}{rr} 869 & 2 \\ 868 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 869 & 0 \end{array}\right),\left(\begin{array}{rr} 697 & 2 \\ 697 & 3 \end{array}\right),\left(\begin{array}{rr} 581 & 2 \\ 581 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 2 \\ 31 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[870])K:=\Q(E[870]) is a degree-4714536960047145369600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/870Z)\GL_2(\Z/870\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 split multiplicative 44 725=5229 725 = 5^{2} \cdot 29
55 additive 1818 29 29
2929 split multiplicative 3030 75=352 75 = 3 \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 2175h consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 435b1, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1740.1 Z/2Z\Z/2\Z not in database
66 6.0.1317006000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.1957698551671875.10 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss split add ord ord ord ord ord ord split ord ord ord ord ord
λ\lambda-invariant(s) 1,8 2 - 1 1 1 1 1 1 2 1 1 1 1 1
μ\mu-invariant(s) 0,0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.