E = EllipticCurve("cu1")
E.isogeny_class()
Elliptic curves in class 217800cu
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
217800.hc3 |
217800cu1 |
[0,0,0,−137268450,619019317125] |
885956203616256/15125 |
4883363257781250000 |
[2] |
26542080 |
3.1279
|
Γ0(N)-optimal |
217800.hc2 |
217800cu2 |
[0,0,0,−137404575,617730077250] |
55537159171536/228765625 |
1181773908383062500000000 |
[2,2] |
53084160 |
3.4745
|
|
217800.hc4 |
217800cu3 |
[0,0,0,−71520075,1211283537750] |
−1957960715364/29541015625 |
−610420407222656250000000000 |
[2] |
106168320 |
3.8211
|
|
217800.hc1 |
217800cu4 |
[0,0,0,−205467075,−58334735250] |
46424454082884/26794860125 |
553675257364365378000000000 |
[2] |
106168320 |
3.8211
|
|
The elliptic curves in class 217800cu have
rank 0.
The elliptic curves in class 217800cu do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.