Properties

Label 22050be
Number of curves 88
Conductor 2205022050
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("be1")
 
E.isogeny_class()
 

Elliptic curves in class 22050be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
22050.bj8 22050be1 [1,1,0,16308,2457216][1, -1, 0, 16308, 2457216] 357911/2160357911/2160 2894606583750000-2894606583750000 [2][2] 110592110592 1.64871.6487 Γ0(N)\Gamma_0(N)-optimal
22050.bj6 22050be2 [1,1,0,204192,32224716][1, -1, 0, -204192, 32224716] 702595369/72900702595369/72900 9769297220156250097692972201562500 [2,2][2, 2] 221184221184 1.99531.9953  
22050.bj7 22050be3 [1,1,0,149067,72457659][1, -1, 0, -149067, -72457659] 273359449/1536000-273359449/1536000 2058386904000000000-2058386904000000000 [2][2] 331776331776 2.19802.1980  
22050.bj5 22050be4 [1,1,0,755442,217491534][1, -1, 0, -755442, -217491534] 35578826569/531441035578826569/5314410 71218176734939062507121817673493906250 [2][2] 442368442368 2.34182.3418  
22050.bj4 22050be5 [1,1,0,3180942,2184414966][1, -1, 0, -3180942, 2184414966] 2656166199049/337502656166199049/33750 4522822787109375045228227871093750 [2][2] 442368442368 2.34182.3418  
22050.bj3 22050be6 [1,1,0,3677067,2707873659][1, -1, 0, -3677067, -2707873659] 4102915888729/90000004102915888729/9000000 1206086076562500000012060860765625000000 [2,2][2, 2] 663552663552 2.54462.5446  
22050.bj1 22050be7 [1,1,0,58802067,173540248659][1, -1, 0, -58802067, -173540248659] 16778985534208729/8100016778985534208729/81000 108547746890625000108547746890625000 [2][2] 13271041327104 2.89112.8911  
22050.bj2 22050be8 [1,1,0,5000067,584458659][1, -1, 0, -5000067, -584458659] 10316097499609/585937500010316097499609/5859375000 78521228942871093750007852122894287109375000 [2][2] 13271041327104 2.89112.8911  

Rank

sage: E.rank()
 

The elliptic curves in class 22050be have rank 11.

Complex multiplication

The elliptic curves in class 22050be do not have complex multiplication.

Modular form 22050.2.a.be

sage: E.q_eigenform(10)
 
qq2+q4q8+2q13+q166q17+4q19+O(q20)q - q^{2} + q^{4} - q^{8} + 2 q^{13} + q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.