Properties

Label 22050be6
Conductor 2205022050
Discriminant 1.206×10191.206\times 10^{19}
j-invariant 41029158887299000000 \frac{4102915888729}{9000000}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x23677067x2707873659y^2+xy=x^3-x^2-3677067x-2707873659 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z3677067xz22707873659z3y^2z+xyz=x^3-x^2z-3677067xz^2-2707873659z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x358833075x173362747250y^2=x^3-58833075x-173362747250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -3677067, -2707873659])
 
gp: E = ellinit([1, -1, 0, -3677067, -2707873659])
 
magma: E := EllipticCurve([1, -1, 0, -3677067, -2707873659]);
 
oscar: E = elliptic_curve([1, -1, 0, -3677067, -2707873659])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(6918,546909)(6918, 546909)4.35670029937440276963203800494.3567002993744027696320380049\infty
(1146,573)(-1146, 573)0022
(2214,1107)(2214, -1107)0022

Integral points

(1146,573) \left(-1146, 573\right) , (2214,1107) \left(2214, -1107\right) , (6918,546909) \left(6918, 546909\right) , (6918,553827) \left(6918, -553827\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  22050 22050  = 23252722 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1206086076562500000012060860765625000000 = 2638512762^{6} \cdot 3^{8} \cdot 5^{12} \cdot 7^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  41029158887299000000 \frac{4102915888729}{9000000}  = 26325673228732^{-6} \cdot 3^{-2} \cdot 5^{-6} \cdot 7^{3} \cdot 2287^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.54457257001514071113130491762.5445725700151407111313049176
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.217592394936379025580626260800.21759239493637902558062626080
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05221278792255981.0522127879225598
Szpiro ratio: σm\sigma_{m} ≈ 5.6960398438167025.696039843816702

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.35670029937440276963203800494.3567002993744027696320380049
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.109038885023782839659133397220.10903888502378283965913339722
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 2222222 2\cdot2^{2}\cdot2^{2}\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.80039794421252624163607340103.8003979442125262416360734010
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.800397944L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1090394.356700128423.800397944\displaystyle 3.800397944 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.109039 \cdot 4.356700 \cdot 128}{4^2} \approx 3.800397944

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   22050.2.a.bj

qq2+q4q8+2q13+q166q17+4q19+O(q20) q - q^{2} + q^{4} - q^{8} + 2 q^{13} + q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 663552
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I6I_{6} nonsplit multiplicative 1 1 6 6
33 44 I2I_{2}^{*} additive -1 2 8 2
55 44 I6I_{6}^{*} additive 1 2 12 6
77 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[337, 252, 714, 127], [503, 714, 0, 839], [1, 0, 12, 1], [829, 12, 828, 13], [9, 4, 824, 833], [599, 0, 0, 839], [1, 12, 0, 1], [433, 714, 266, 125], [421, 252, 126, 673]]
 
GL(2,Integers(840)).subgroup(gens)
 
Gens := [[337, 252, 714, 127], [503, 714, 0, 839], [1, 0, 12, 1], [829, 12, 828, 13], [9, 4, 824, 833], [599, 0, 0, 839], [1, 12, 0, 1], [433, 714, 266, 125], [421, 252, 126, 673]];
 
sub<GL(2,Integers(840))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 , index 384384, genus 55, and generators

(337252714127),(5037140839),(10121),(8291282813),(94824833),(59900839),(11201),(433714266125),(421252126673)\left(\begin{array}{rr} 337 & 252 \\ 714 & 127 \end{array}\right),\left(\begin{array}{rr} 503 & 714 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 829 & 12 \\ 828 & 13 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 824 & 833 \end{array}\right),\left(\begin{array}{rr} 599 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 433 & 714 \\ 266 & 125 \end{array}\right),\left(\begin{array}{rr} 421 & 252 \\ 126 & 673 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[840])K:=\Q(E[840]) is a degree-185794560185794560 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/840Z)\GL_2(\Z/840\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 11025=325272 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2}
33 additive 88 1225=5272 1225 = 5^{2} \cdot 7^{2}
55 additive 1818 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
77 additive 2626 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 22050be consists of 8 curves linked by isogenies of degrees dividing 12.

Twists

The minimal quadratic twist of this elliptic curve is 30a6, its twist by 105105.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(35)\Q(\sqrt{-35}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
44 Q(15,21)\Q(\sqrt{-15}, \sqrt{-21}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,35)\Q(\sqrt{6}, \sqrt{-35}) Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
44 Q(10,21)\Q(\sqrt{10}, \sqrt{21}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
66 6.2.7595177625.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
88 8.0.497871360000.5 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
88 8.0.31116960000.4 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1616 16.0.63456228123711897600000000.9 Z/4ZZ/12Z\Z/4\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1818 18.0.1038556228666569068617875000000000000.7 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add add add ss ord ord ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) 6 - - - 3,1 1 1 1 1,1 1 1 1 1 1 1,1
μ\mu-invariant(s) 0 - - - 0,0 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.