Properties

Label 221952.d
Number of curves $4$
Conductor $221952$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 221952.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221952.d1 221952bh3 \([0, -1, 0, -187079, -31082421]\) \(58591911104/243\) \(3003099784704\) \([2]\) \(819200\) \(1.6036\)  
221952.d2 221952bh4 \([0, -1, 0, -184189, -32092187]\) \(-873722816/59049\) \(-46704207851716608\) \([2]\) \(1638400\) \(1.9502\)  
221952.d3 221952bh1 \([0, -1, 0, -2119, 37099]\) \(85184/3\) \(37075305984\) \([2]\) \(163840\) \(0.79889\) \(\Gamma_0(N)\)-optimal
221952.d4 221952bh2 \([0, -1, 0, 771, 127845]\) \(64/9\) \(-7118458748928\) \([2]\) \(327680\) \(1.1455\)  

Rank

sage: E.rank()
 

The elliptic curves in class 221952.d have rank \(1\).

Complex multiplication

The elliptic curves in class 221952.d do not have complex multiplication.

Modular form 221952.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + 4 q^{13} + 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.