Properties

Label 221952.d
Number of curves 44
Conductor 221952221952
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 221952.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221952.d1 221952bh3 [0,1,0,187079,31082421][0, -1, 0, -187079, -31082421] 58591911104/24358591911104/243 30030997847043003099784704 [2][2] 819200819200 1.60361.6036  
221952.d2 221952bh4 [0,1,0,184189,32092187][0, -1, 0, -184189, -32092187] 873722816/59049-873722816/59049 46704207851716608-46704207851716608 [2][2] 16384001638400 1.95021.9502  
221952.d3 221952bh1 [0,1,0,2119,37099][0, -1, 0, -2119, 37099] 85184/385184/3 3707530598437075305984 [2][2] 163840163840 0.798890.79889 Γ0(N)\Gamma_0(N)-optimal
221952.d4 221952bh2 [0,1,0,771,127845][0, -1, 0, 771, 127845] 64/964/9 7118458748928-7118458748928 [2][2] 327680327680 1.14551.1455  

Rank

sage: E.rank()
 

The elliptic curves in class 221952.d have rank 11.

Complex multiplication

The elliptic curves in class 221952.d do not have complex multiplication.

Modular form 221952.2.a.d

sage: E.q_eigenform(10)
 
qq32q52q7+q9+4q13+2q154q19+O(q20)q - q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + 4 q^{13} + 2 q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(12510211055101210521)\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.