Properties

Label 221952.bi
Number of curves $4$
Conductor $221952$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bi1")
 
E.isogeny_class()
 

Elliptic curves in class 221952.bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221952.bi1 221952ba4 \([0, 1, 0, -748317, -249407685]\) \(58591911104/243\) \(192198386221056\) \([2]\) \(1638400\) \(1.9502\)  
221952.bi2 221952ba3 \([0, 1, 0, -46047, -4034547]\) \(-873722816/59049\) \(-729753247683072\) \([2]\) \(819200\) \(1.6036\)  
221952.bi3 221952ba2 \([0, 1, 0, -8477, 288315]\) \(85184/3\) \(2372819582976\) \([2]\) \(327680\) \(1.1455\)  
221952.bi4 221952ba1 \([0, 1, 0, 193, 16077]\) \(64/9\) \(-111225917952\) \([2]\) \(163840\) \(0.79889\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 221952.bi have rank \(0\).

Complex multiplication

The elliptic curves in class 221952.bi do not have complex multiplication.

Modular form 221952.2.a.bi

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - 2 q^{7} + q^{9} - 4 q^{13} + 2 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.