Show commands:
SageMath
E = EllipticCurve("bi1")
E.isogeny_class()
Elliptic curves in class 221952.bi
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
221952.bi1 | 221952ba4 | \([0, 1, 0, -748317, -249407685]\) | \(58591911104/243\) | \(192198386221056\) | \([2]\) | \(1638400\) | \(1.9502\) | |
221952.bi2 | 221952ba3 | \([0, 1, 0, -46047, -4034547]\) | \(-873722816/59049\) | \(-729753247683072\) | \([2]\) | \(819200\) | \(1.6036\) | |
221952.bi3 | 221952ba2 | \([0, 1, 0, -8477, 288315]\) | \(85184/3\) | \(2372819582976\) | \([2]\) | \(327680\) | \(1.1455\) | |
221952.bi4 | 221952ba1 | \([0, 1, 0, 193, 16077]\) | \(64/9\) | \(-111225917952\) | \([2]\) | \(163840\) | \(0.79889\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 221952.bi have rank \(0\).
Complex multiplication
The elliptic curves in class 221952.bi do not have complex multiplication.Modular form 221952.2.a.bi
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.