Properties

Label 221952ba1
Conductor 221952221952
Discriminant 111225917952-111225917952
j-invariant 649 \frac{64}{9}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+193x+16077y^2=x^3+x^2+193x+16077 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+193xz2+16077z3y^2z=x^3+x^2z+193xz^2+16077z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+15606x+11673288y^2=x^3+15606x+11673288 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 193, 16077])
 
gp: E = ellinit([0, 1, 0, 193, 16077])
 
magma: E := EllipticCurve([0, 1, 0, 193, 16077]);
 
oscar: E = elliptic_curve([0, 1, 0, 193, 16077])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(23,0)(-23, 0)0022

Integral points

(23,0) \left(-23, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  221952 221952  = 2831722^{8} \cdot 3 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  111225917952-111225917952 = 12932176-1 \cdot 2^{9} \cdot 3^{2} \cdot 17^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  649 \frac{64}{9}  = 26322^{6} \cdot 3^{-2}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.798891306490624332433616465700.79889130649062433243361646570
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1375757509574426897540749343-1.1375757509574426897540749343
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.3111012199262271.311101219926227
Szpiro ratio: σm\sigma_{m} ≈ 2.67139296122357942.6713929612235794

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.811611544437539659895183164840.81161154443753965989518316484
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.24644617775015863958073265943.2464461777501586395807326594
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.246446178L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8116121.00000016223.246446178\displaystyle 3.246446178 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.811612 \cdot 1.000000 \cdot 16}{2^2} \approx 3.246446178

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 221952.2.a.bi

q+q3+2q52q7+q94q13+2q15+4q19+O(q20) q + q^{3} + 2 q^{5} - 2 q^{7} + q^{9} - 4 q^{13} + 2 q^{15} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 163840
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive 1 8 9 0
33 22 I2I_{2} split multiplicative -1 1 2 2
1717 44 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.5
55 5B 5.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[2211, 1700, 2380, 3707], [2058, 1445, 595, 562], [11, 16, 3840, 3731], [4061, 20, 4060, 21], [3839, 0, 0, 4079], [1, 10, 10, 101], [1361, 1700, 170, 681], [356, 3825, 425, 866], [1, 0, 20, 1], [1, 20, 0, 1]]
 
GL(2,Integers(4080)).subgroup(gens)
 
Gens := [[2211, 1700, 2380, 3707], [2058, 1445, 595, 562], [11, 16, 3840, 3731], [4061, 20, 4060, 21], [3839, 0, 0, 4079], [1, 10, 10, 101], [1361, 1700, 170, 681], [356, 3825, 425, 866], [1, 0, 20, 1], [1, 20, 0, 1]];
 
sub<GL(2,Integers(4080))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4080=243517 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 , index 288288, genus 55, and generators

(2211170023803707),(20581445595562),(111638403731),(406120406021),(3839004079),(11010101),(13611700170681),(3563825425866),(10201),(12001)\left(\begin{array}{rr} 2211 & 1700 \\ 2380 & 3707 \end{array}\right),\left(\begin{array}{rr} 2058 & 1445 \\ 595 & 562 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 3840 & 3731 \end{array}\right),\left(\begin{array}{rr} 4061 & 20 \\ 4060 & 21 \end{array}\right),\left(\begin{array}{rr} 3839 & 0 \\ 0 & 4079 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1361 & 1700 \\ 170 & 681 \end{array}\right),\left(\begin{array}{rr} 356 & 3825 \\ 425 & 866 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4080])K:=\Q(E[4080]) is a degree-154014842880154014842880 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4080Z)\GL_2(\Z/4080\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 289=172 289 = 17^{2}
33 split multiplicative 44 73984=28172 73984 = 2^{8} \cdot 17^{2}
1717 additive 146146 768=283 768 = 2^{8} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 5 and 10.
Its isogeny class 221952ba consists of 4 curves linked by isogenies of degrees dividing 10.

Twists

The minimal quadratic twist of this elliptic curve is 768b1, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{-2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.5326848.6 Z/4Z\Z/4\Z not in database
44 4.4.591872.2 Z/10Z\Z/10\Z not in database
88 8.0.50444994871296.22 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.28375309615104.128 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
88 8.0.1401249857536.3 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/20Z\Z/20\Z not in database
2020 20.0.95417737784685359917499840200704000000000000000.2 Z/10Z\Z/10\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.