Properties

Label 221952bj1
Conductor 221952221952
Discriminant 111225917952111225917952
j-invariant 27440009 \frac{2744000}{9}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x26743x210285y^2=x^3-x^2-6743x-210285 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z6743xz2210285z3y^2z=x^3-x^2z-6743xz^2-210285z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3546210x154936368y^2=x^3-546210x-154936368 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -6743, -210285])
 
gp: E = ellinit([0, -1, 0, -6743, -210285])
 
magma: E := EllipticCurve([0, -1, 0, -6743, -210285]);
 
oscar: E = elliptic_curve([0, -1, 0, -6743, -210285])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(46,21)(-46, 21)2.63402662947818827827640208102.6340266294781882782764020810\infty
(45,0)(-45, 0)0022

Integral points

(46,±21)(-46,\pm 21), (45,0) \left(-45, 0\right) , (533,±12138)(533,\pm 12138) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  221952 221952  = 2831722^{8} \cdot 3 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  111225917952111225917952 = 29321762^{9} \cdot 3^{2} \cdot 17^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  27440009 \frac{2744000}{9}  = 263253732^{6} \cdot 3^{-2} \cdot 5^{3} \cdot 7^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.984892247645003007504851712690.98489224764500300750485171269
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.95157480980306401468283968734-0.95157480980306401468283968734
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.1067154413146731.106715441314673
Szpiro ratio: σm\sigma_{m} ≈ 3.0919466120408423.091946612040842

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.63402662947818827827640208102.6340266294781882782764020810
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.526946521260870103786471254490.52694652126087010378647125449
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.55196467724810463531613597235.5519646772481046353161359723
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.551964677L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5269472.63402716225.551964677\displaystyle 5.551964677 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.526947 \cdot 2.634027 \cdot 16}{2^2} \approx 5.551964677

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 221952.2.a.i

qq34q7+q9+4q11+4q13+4q19+O(q20) q - q^{3} - 4 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 327680
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive 1 8 9 0
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1717 44 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.24.0.130

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 16, 0, 1], [562, 493, 459, 154], [13, 8, 8, 5], [801, 16, 800, 17], [575, 0, 0, 815], [11, 12, 716, 707], [545, 442, 238, 477], [103, 442, 374, 477], [1, 0, 16, 1], [11, 8, 688, 723]]
 
GL(2,Integers(816)).subgroup(gens)
 
Gens := [[1, 16, 0, 1], [562, 493, 459, 154], [13, 8, 8, 5], [801, 16, 800, 17], [575, 0, 0, 815], [11, 12, 716, 707], [545, 442, 238, 477], [103, 442, 374, 477], [1, 0, 16, 1], [11, 8, 688, 723]];
 
sub<GL(2,Integers(816))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 816=24317 816 = 2^{4} \cdot 3 \cdot 17 , index 9696, genus 11, and generators

(11601),(562493459154),(13885),(8011680017),(57500815),(1112716707),(545442238477),(103442374477),(10161),(118688723)\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 562 & 493 \\ 459 & 154 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 801 & 16 \\ 800 & 17 \end{array}\right),\left(\begin{array}{rr} 575 & 0 \\ 0 & 815 \end{array}\right),\left(\begin{array}{rr} 11 & 12 \\ 716 & 707 \end{array}\right),\left(\begin{array}{rr} 545 & 442 \\ 238 & 477 \end{array}\right),\left(\begin{array}{rr} 103 & 442 \\ 374 & 477 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 8 \\ 688 & 723 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[816])K:=\Q(E[816]) is a degree-962592768962592768 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/816Z)\GL_2(\Z/816\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 289=172 289 = 17^{2}
33 nonsplit multiplicative 44 73984=28172 73984 = 2^{8} \cdot 17^{2}
1717 additive 146146 768=283 768 = 2^{8} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 221952bj consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 768a1, its twist by 68-68.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.591872.4 Z/4Z\Z/4\Z not in database
88 8.0.1401249857536.22 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.113501238460416.35 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.50444994871296.25 Z/8Z\Z/8\Z not in database
88 8.0.50444994871296.18 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.