Properties

Label 22253b2
Conductor 2225322253
Discriminant 3.780×1015-3.780\times 10^{15}
j-invariant 13278380032156590819 -\frac{13278380032}{156590819}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3x214257x+3034390y^2+y=x^3-x^2-14257x+3034390 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3x2z14257xz2+3034390z3y^2z+yz^2=x^3-x^2z-14257xz^2+3034390z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x318477504x+141350783184y^2=x^3-18477504x+141350783184 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 1, -14257, 3034390])
 
gp: E = ellinit([0, -1, 1, -14257, 3034390])
 
magma: E := EllipticCurve([0, -1, 1, -14257, 3034390]);
 
oscar: E = elliptic_curve([0, -1, 1, -14257, 3034390])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(40,1589)(40, 1589)0.978017695084328549452986509040.97801769508432854945298650904\infty
(92,1886)(-92, 1886)1.02081086615742185683671165111.0208108661574218568367116511\infty

Integral points

(92,1886) \left(-92, 1886\right) , (92,1887) \left(-92, -1887\right) , (70,1919) \left(-70, 1919\right) , (70,1920) \left(-70, -1920\right) , (40,1589) \left(40, 1589\right) , (40,1590) \left(40, -1590\right) , (194,2744) \left(194, 2744\right) , (194,2745) \left(194, -2745\right) , (30092,5219945) \left(30092, 5219945\right) , (30092,5219946) \left(30092, -5219946\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  22253 22253  = 7111727 \cdot 11 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3779721698379011-3779721698379011 = 176113176-1 \cdot 7^{6} \cdot 11^{3} \cdot 17^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13278380032156590819 -\frac{13278380032}{156590819}  = 121876113373-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.67091314697675874934730887421.6709131469767587493473088742
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.254306474948650709222541565260.25430647494865070922254156526
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06521683961209131.0652168396120913
Szpiro ratio: σm\sigma_{m} ≈ 4.3326720453683124.332672045368312

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.951678605950183559632700374950.95167860595018355963270037495
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.375665870893817479348096272580.37566587089381747934809627258
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 232 2\cdot3\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 4.29015806778347827570822213314.2901580677834782757082221331
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.290158068L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3756660.95167912124.290158068\displaystyle 4.290158068 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.375666 \cdot 0.951679 \cdot 12}{1^2} \approx 4.290158068

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   22253.2.a.e

qq32q43q5q72q9+q11+2q124q13+3q15+4q16+2q19+O(q20) q - q^{3} - 2 q^{4} - 3 q^{5} - q^{7} - 2 q^{9} + q^{11} + 2 q^{12} - 4 q^{13} + 3 q^{15} + 4 q^{16} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 92160
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
77 22 I6I_{6} nonsplit multiplicative 1 1 6 6
1111 33 I3I_{3} split multiplicative -1 1 3 3
1717 22 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 3.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 18, 0, 1], [1, 20808, 0, 20945], [1, 9, 9, 82], [23545, 18, 23544, 19], [14995, 20808, 15759, 22339], [1, 6, 6, 37], [1, 0, 18, 1], [1, 12, 0, 1], [6937, 20808, 9486, 15709], [18017, 0, 0, 23561]]
 
GL(2,Integers(23562)).subgroup(gens)
 
Gens := [[1, 18, 0, 1], [1, 20808, 0, 20945], [1, 9, 9, 82], [23545, 18, 23544, 19], [14995, 20808, 15759, 22339], [1, 6, 6, 37], [1, 0, 18, 1], [1, 12, 0, 1], [6937, 20808, 9486, 15709], [18017, 0, 0, 23561]];
 
sub<GL(2,Integers(23562))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 23562=23271117 23562 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 , index 144144, genus 33, and generators

(11801),(120808020945),(19982),(23545182354419),(14995208081575922339),(16637),(10181),(11201),(693720808948615709),(180170023561)\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20808 \\ 0 & 20945 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 23545 & 18 \\ 23544 & 19 \end{array}\right),\left(\begin{array}{rr} 14995 & 20808 \\ 15759 & 22339 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6937 & 20808 \\ 9486 & 15709 \end{array}\right),\left(\begin{array}{rr} 18017 & 0 \\ 0 & 23561 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[23562])K:=\Q(E[23562]) is a degree-337707624038400337707624038400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/23562Z)\GL_2(\Z/23562\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 3179=11172 3179 = 11 \cdot 17^{2}
33 good 22 289=172 289 = 17^{2}
77 nonsplit multiplicative 88 3179=11172 3179 = 11 \cdot 17^{2}
1111 split multiplicative 1212 2023=7172 2023 = 7 \cdot 17^{2}
1717 additive 146146 77=711 77 = 7 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 22253b consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 77b1, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(17)\Q(\sqrt{17}) Z/3Z\Z/3\Z not in database
22 Q(51)\Q(\sqrt{-51}) Z/3Z\Z/3\Z not in database
33 3.1.44.1 Z/2Z\Z/2\Z not in database
44 Q(3,17)\Q(\sqrt{-3}, \sqrt{17}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.9511568.1 Z/6Z\Z/6\Z not in database
66 6.0.256812336.4 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 12.0.10946861024053504.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.635915422086640752366160224633.1 Z/9Z\Z/9\Z not in database
1818 18.0.39282839440563331261967600115701520657541879419.1 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord ord nonsplit split ord add ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) 10,11 2 2 2 3 2 - 2 2 2 2 2 2 2 2,2
μ\mu-invariant(s) 0,0 1 0 0 0 0 - 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.