Properties

Label 226512.bn
Number of curves 22
Conductor 226512226512
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bn1")
 
E.isogeny_class()
 

Elliptic curves in class 226512.bn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
226512.bn1 226512et2 [0,0,0,51523131,116943983926][0, 0, 0, -51523131, -116943983926] 5718957389087906/10758762638915718957389087906/1075876263891 28456135340495212695121922845613534049521269512192 [2][2] 3612672036126720 3.41013.4101  
226512.bn2 226512et1 [0,0,0,6455229,10692841390][0, 0, 0, 6455229, -10692841390] 22494434350748/5036725079122494434350748/50367250791 66608835669162407402496-66608835669162407402496 [2][2] 1806336018063360 3.06363.0636 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 226512.bn have rank 11.

Complex multiplication

The elliptic curves in class 226512.bn do not have complex multiplication.

Modular form 226512.2.a.bn

sage: E.q_eigenform(10)
 
q2q5q13+8q17+2q19+O(q20)q - 2 q^{5} - q^{13} + 8 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.