Properties

Label 226512.bn
Number of curves $2$
Conductor $226512$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bn1")
 
E.isogeny_class()
 

Elliptic curves in class 226512.bn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
226512.bn1 226512et2 \([0, 0, 0, -51523131, -116943983926]\) \(5718957389087906/1075876263891\) \(2845613534049521269512192\) \([2]\) \(36126720\) \(3.4101\)  
226512.bn2 226512et1 \([0, 0, 0, 6455229, -10692841390]\) \(22494434350748/50367250791\) \(-66608835669162407402496\) \([2]\) \(18063360\) \(3.0636\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 226512.bn have rank \(1\).

Complex multiplication

The elliptic curves in class 226512.bn do not have complex multiplication.

Modular form 226512.2.a.bn

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{13} + 8 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.