Properties

Label 226512.do
Number of curves 44
Conductor 226512226512
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("do1")
 
E.isogeny_class()
 

Elliptic curves in class 226512.do

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
226512.do1 226512bt4 [0,0,0,814935,262864514][0, 0, 0, -814935, 262864514] 181037698000/14480427181037698000/14480427 47874579578733473284787457957873347328 [2][2] 33177603317760 2.32772.3277  
226512.do2 226512bt3 [0,0,0,798600,274687787][0, 0, 0, -798600, 274687787] 2725888000000/197732725888000000/19773 408579138416592408579138416592 [2][2] 16588801658880 1.98111.9811  
226512.do3 226512bt2 [0,0,0,161535,24918982][0, 0, 0, -161535, -24918982] 1409938000/45631409938000/4563 15085998956920321508599895692032 [2][2] 11059201105920 1.77841.7784  
226512.do4 226512bt1 [0,0,0,14520,14641][0, 0, 0, -14520, -14641] 16384000/947716384000/9477 195827871075408195827871075408 [2][2] 552960552960 1.43181.4318 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 226512.do have rank 00.

Complex multiplication

The elliptic curves in class 226512.do do not have complex multiplication.

Modular form 226512.2.a.do

sage: E.q_eigenform(10)
 
q+2q7q136q17+2q19+O(q20)q + 2 q^{7} - q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.