Properties

Label 226512.do
Number of curves $4$
Conductor $226512$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("do1")
 
E.isogeny_class()
 

Elliptic curves in class 226512.do

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
226512.do1 226512bt4 \([0, 0, 0, -814935, 262864514]\) \(181037698000/14480427\) \(4787457957873347328\) \([2]\) \(3317760\) \(2.3277\)  
226512.do2 226512bt3 \([0, 0, 0, -798600, 274687787]\) \(2725888000000/19773\) \(408579138416592\) \([2]\) \(1658880\) \(1.9811\)  
226512.do3 226512bt2 \([0, 0, 0, -161535, -24918982]\) \(1409938000/4563\) \(1508599895692032\) \([2]\) \(1105920\) \(1.7784\)  
226512.do4 226512bt1 \([0, 0, 0, -14520, -14641]\) \(16384000/9477\) \(195827871075408\) \([2]\) \(552960\) \(1.4318\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 226512.do have rank \(0\).

Complex multiplication

The elliptic curves in class 226512.do do not have complex multiplication.

Modular form 226512.2.a.do

sage: E.q_eigenform(10)
 
\(q + 2 q^{7} - q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.