E = EllipticCurve("do1")
E.isogeny_class()
Elliptic curves in class 226512.do
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
226512.do1 |
226512bt4 |
[0,0,0,−814935,262864514] |
181037698000/14480427 |
4787457957873347328 |
[2] |
3317760 |
2.3277
|
|
226512.do2 |
226512bt3 |
[0,0,0,−798600,274687787] |
2725888000000/19773 |
408579138416592 |
[2] |
1658880 |
1.9811
|
|
226512.do3 |
226512bt2 |
[0,0,0,−161535,−24918982] |
1409938000/4563 |
1508599895692032 |
[2] |
1105920 |
1.7784
|
|
226512.do4 |
226512bt1 |
[0,0,0,−14520,−14641] |
16384000/9477 |
195827871075408 |
[2] |
552960 |
1.4318
|
Γ0(N)-optimal |
The elliptic curves in class 226512.do have
rank 0.
The elliptic curves in class 226512.do do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.