Properties

Label 226512.ea
Number of curves 22
Conductor 226512226512
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ea1")
 
E.isogeny_class()
 

Elliptic curves in class 226512.ea

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
226512.ea1 226512by2 [0,0,0,6308940,6099338113][0, 0, 0, -6308940, -6099338113] 11107182592000/1311107182592000/13 3250366584379232503665843792 [][] 34214403421440 2.30662.3066  
226512.ea2 226512by1 [0,0,0,79860,7920781][0, 0, 0, -79860, -7920781] 22528000/219722528000/2197 54931195276008485493119527600848 [][] 11404801140480 1.75731.7573 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 226512.ea have rank 11.

Complex multiplication

The elliptic curves in class 226512.ea do not have complex multiplication.

Modular form 226512.2.a.ea

sage: E.q_eigenform(10)
 
q+4q7+q133q172q19+O(q20)q + 4 q^{7} + q^{13} - 3 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.