Properties

Label 2268.c
Number of curves 22
Conductor 22682268
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 2268.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2268.c1 2268c1 [0,0,0,45,117][0, 0, 0, -45, 117] 864000/7-864000/7 81648-81648 [3][3] 216216 0.23004-0.23004 Γ0(N)\Gamma_0(N)-optimal
2268.c2 2268c2 [0,0,0,135,621][0, 0, 0, 135, 621] 288000/343288000/343 324060912-324060912 [][] 648648 0.319270.31927  

Rank

sage: E.rank()
 

The elliptic curves in class 2268.c have rank 11.

Complex multiplication

The elliptic curves in class 2268.c do not have complex multiplication.

Modular form 2268.2.a.c

sage: E.q_eigenform(10)
 
q+q7+3q114q136q174q19+O(q20)q + q^{7} + 3 q^{11} - 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.