Properties

Label 2268.c
Number of curves $2$
Conductor $2268$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 2268.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2268.c1 2268c1 \([0, 0, 0, -45, 117]\) \(-864000/7\) \(-81648\) \([3]\) \(216\) \(-0.23004\) \(\Gamma_0(N)\)-optimal
2268.c2 2268c2 \([0, 0, 0, 135, 621]\) \(288000/343\) \(-324060912\) \([]\) \(648\) \(0.31927\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2268.c have rank \(1\).

Complex multiplication

The elliptic curves in class 2268.c do not have complex multiplication.

Modular form 2268.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{7} + 3 q^{11} - 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.