Properties

Label 2299d
Number of curves 33
Conductor 22992299
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 2299d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2299.b3 2299d1 [0,1,1,81,39][0, 1, 1, 81, 39] 32768/1932768/19 33659659-33659659 [][] 450450 0.133770.13377 Γ0(N)\Gamma_0(N)-optimal
2299.b2 2299d2 [0,1,1,1129,15164][0, 1, 1, -1129, 15164] 89915392/6859-89915392/6859 12151136899-12151136899 [][] 13501350 0.683080.68308  
2299.b1 2299d3 [0,1,1,93089,10900929][0, 1, 1, -93089, 10900929] 50357871050752/19-50357871050752/19 33659659-33659659 [][] 40504050 1.23241.2324  

Rank

sage: E.rank()
 

The elliptic curves in class 2299d have rank 00.

Complex multiplication

The elliptic curves in class 2299d do not have complex multiplication.

Modular form 2299.2.a.d

sage: E.q_eigenform(10)
 
q2q32q4+3q5+q7+q9+4q12+4q136q15+4q16+3q17q19+O(q20)q - 2 q^{3} - 2 q^{4} + 3 q^{5} + q^{7} + q^{9} + 4 q^{12} + 4 q^{13} - 6 q^{15} + 4 q^{16} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.