Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 2304.m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
2304.m1 | 2304a1 | \([0, 0, 0, -54, 0]\) | \(1728\) | \(10077696\) | \([2]\) | \(384\) | \(0.033287\) | \(\Gamma_0(N)\)-optimal | \(-4\) |
2304.m2 | 2304a2 | \([0, 0, 0, 216, 0]\) | \(1728\) | \(-644972544\) | \([2]\) | \(768\) | \(0.37986\) | \(-4\) |
Rank
sage: E.rank()
The elliptic curves in class 2304.m have rank \(1\).
Complex multiplication
Each elliptic curve in class 2304.m has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 2304.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.