Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 2304.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2304.o1 | 2304f4 | \([0, 0, 0, -23304, 1369280]\) | \(58591911104/243\) | \(5804752896\) | \([2]\) | \(2560\) | \(1.0829\) | |
2304.o2 | 2304f3 | \([0, 0, 0, -1434, 22088]\) | \(-873722816/59049\) | \(-22039921152\) | \([2]\) | \(1280\) | \(0.73631\) | |
2304.o3 | 2304f2 | \([0, 0, 0, -264, -1600]\) | \(85184/3\) | \(71663616\) | \([2]\) | \(512\) | \(0.27816\) | |
2304.o4 | 2304f1 | \([0, 0, 0, 6, -88]\) | \(64/9\) | \(-3359232\) | \([2]\) | \(256\) | \(-0.068409\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2304.o have rank \(0\).
Complex multiplication
The elliptic curves in class 2304.o do not have complex multiplication.Modular form 2304.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.