Properties

Label 2304i
Number of curves 22
Conductor 23042304
CM Q(1)\Q(\sqrt{-1})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 2304i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
2304.n2 2304i1 [0,0,0,6,0][0, 0, 0, 6, 0] 17281728 13824-13824 [2][2] 128128 0.51602-0.51602 Γ0(N)\Gamma_0(N)-optimal 4-4
2304.n1 2304i2 [0,0,0,24,0][0, 0, 0, -24, 0] 17281728 884736884736 [2][2] 256256 0.16945-0.16945   4-4

Rank

sage: E.rank()
 

The elliptic curves in class 2304i have rank 00.

Complex multiplication

Each elliptic curve in class 2304i has complex multiplication by an order in the imaginary quadratic field Q(1)\Q(\sqrt{-1}) .

Modular form 2304.2.a.i

sage: E.q_eigenform(10)
 
q+2q5+4q13+8q17+O(q20)q + 2 q^{5} + 4 q^{13} + 8 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.