Properties

Label 2304i
Number of curves $2$
Conductor $2304$
CM \(\Q(\sqrt{-1}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 2304i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
2304.n2 2304i1 \([0, 0, 0, 6, 0]\) \(1728\) \(-13824\) \([2]\) \(128\) \(-0.51602\) \(\Gamma_0(N)\)-optimal \(-4\)
2304.n1 2304i2 \([0, 0, 0, -24, 0]\) \(1728\) \(884736\) \([2]\) \(256\) \(-0.16945\)   \(-4\)

Rank

sage: E.rank()
 

The elliptic curves in class 2304i have rank \(0\).

Complex multiplication

Each elliptic curve in class 2304i has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 2304.2.a.i

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{13} + 8 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.