sage:E = EllipticCurve("db1")
E.isogeny_class()
Elliptic curves in class 230640.db
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
230640.db1 |
230640db3 |
[0,1,0,−6381360,6202188468] |
15811147933922/1016955 |
1848425074506455040 |
[4] |
5898240 |
2.5626
|
|
230640.db2 |
230640db4 |
[0,1,0,−2152960,−1142465452] |
607199886722/41558445 |
75536942928150620160 |
[2] |
5898240 |
2.5626
|
|
230640.db3 |
230640db2 |
[0,1,0,−423160,84308708] |
9220796644/1946025 |
1768554855237657600 |
[2,2] |
2949120 |
2.2160
|
|
230640.db4 |
230640db1 |
[0,1,0,57340,8005308] |
91765424/174375 |
−39618164319840000 |
[2] |
1474560 |
1.8695
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 230640.db have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
5 | 1−T |
31 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+7T2 |
1.7.a
|
11 |
1+11T2 |
1.11.a
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 230640.db do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.