Properties

Label 230640.db
Number of curves $4$
Conductor $230640$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("db1")
 
E.isogeny_class()
 

Elliptic curves in class 230640.db

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
230640.db1 230640db3 \([0, 1, 0, -6381360, 6202188468]\) \(15811147933922/1016955\) \(1848425074506455040\) \([4]\) \(5898240\) \(2.5626\)  
230640.db2 230640db4 \([0, 1, 0, -2152960, -1142465452]\) \(607199886722/41558445\) \(75536942928150620160\) \([2]\) \(5898240\) \(2.5626\)  
230640.db3 230640db2 \([0, 1, 0, -423160, 84308708]\) \(9220796644/1946025\) \(1768554855237657600\) \([2, 2]\) \(2949120\) \(2.2160\)  
230640.db4 230640db1 \([0, 1, 0, 57340, 8005308]\) \(91765424/174375\) \(-39618164319840000\) \([2]\) \(1474560\) \(1.8695\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 230640.db have rank \(0\).

Complex multiplication

The elliptic curves in class 230640.db do not have complex multiplication.

Modular form 230640.2.a.db

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} + 2 q^{13} + q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.