sage:E = EllipticCurve("bj1")
E.isogeny_class()
Elliptic curves in class 23104.bj
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
23104.bj1 |
23104l3 |
[0,1,0,−1975873,8598438175] |
−69173457625/2550136832 |
−31450315864667322318848 |
[] |
1244160 |
2.9971
|
|
23104.bj2 |
23104l1 |
[0,1,0,−358593,−82797409] |
−413493625/152 |
−1874584905187328 |
[] |
138240 |
1.8985
|
Γ0(N)-optimal |
23104.bj3 |
23104l2 |
[0,1,0,219007,−314091553] |
94196375/3511808 |
−43310409649448026112 |
[] |
414720 |
2.4478
|
|
sage:E.rank()
The elliptic curves in class 23104.bj have
rank 0.
The elliptic curves in class 23104.bj do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎛193913331⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.