Properties

Label 23104bb
Number of curves $1$
Conductor $23104$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bb1")
 
E.isogeny_class()
 

Elliptic curves in class 23104bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23104.bg1 23104bb1 \([0, 1, 0, -612737, -184816009]\) \(1462911232\) \(17391168553984\) \([]\) \(153216\) \(1.8556\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 23104bb1 has rank \(0\).

Complex multiplication

The elliptic curves in class 23104bb do not have complex multiplication.

Modular form 23104.2.a.bb

sage: E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{5} - 2 q^{9} - 4 q^{11} + 5 q^{13} - 3 q^{15} - 5 q^{17} + O(q^{20})\) Copy content Toggle raw display