Properties

Label 23104bv2
Conductor 2310423104
Discriminant 48452599808-48452599808
j-invariant 246579625512 -\frac{246579625}{512}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x25953x175135y^2=x^3-x^2-5953x-175135 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z5953xz2175135z3y^2z=x^3-x^2z-5953xz^2-175135z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3482220x129120048y^2=x^3-482220x-129120048 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -5953, -175135])
 
gp: E = ellinit([0, -1, 0, -5953, -175135])
 
magma: E := EllipticCurve([0, -1, 0, -5953, -175135]);
 
oscar: E = elliptic_curve([0, -1, 0, -5953, -175135])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(16927/169,1038376/2197)(16927/169, 1038376/2197)9.40927603327512541519272313489.4092760332751254151927231348\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  23104 23104  = 261922^{6} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  48452599808-48452599808 = 1227192-1 \cdot 2^{27} \cdot 19^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  246579625512 -\frac{246579625}{512}  = 1295319473-1 \cdot 2^{-9} \cdot 5^{3} \cdot 19 \cdot 47^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.936125496855230063841688191310.93612549685523006384168819131
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.59433510384576131028566456286-0.59433510384576131028566456286
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.9731914612792140.973191461279214
Szpiro ratio: σm\sigma_{m} ≈ 3.7513137688739873.751313768873987

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 9.40927603327512541519272313489.4092760332751254151927231348
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.271722419901506478299291489440.27172241990150647829929148944
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.11342250656552974089666287605.1134225065655297408966628760
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.113422507L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2717229.4092762125.113422507\displaystyle 5.113422507 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.271722 \cdot 9.409276 \cdot 2}{1^2} \approx 5.113422507

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   23104.2.a.r

qq3+4q72q9+3q11+2q136q17+O(q20) q - q^{3} + 4 q^{7} - 2 q^{9} + 3 q^{11} + 2 q^{13} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 20736
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I17I_{17}^{*} additive -1 6 27 9
1919 11 IIII additive -1 2 2 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 8.2.0.1
33 3B 9.12.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[674, 1359, 351, 8], [1, 18, 12, 217], [1351, 18, 1350, 19], [1, 18, 0, 1], [10, 9, 81, 73], [13, 12, 1304, 1309], [155, 18, 702, 1103], [1358, 1359, 693, 8], [1, 0, 18, 1], [1027, 702, 0, 875]]
 
GL(2,Integers(1368)).subgroup(gens)
 
Gens := [[674, 1359, 351, 8], [1, 18, 12, 217], [1351, 18, 1350, 19], [1, 18, 0, 1], [10, 9, 81, 73], [13, 12, 1304, 1309], [155, 18, 702, 1103], [1358, 1359, 693, 8], [1, 0, 18, 1], [1027, 702, 0, 875]];
 
sub<GL(2,Integers(1368))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1368=233219 1368 = 2^{3} \cdot 3^{2} \cdot 19 , index 144144, genus 22, and generators

(67413593518),(11812217),(135118135019),(11801),(1098173),(131213041309),(155187021103),(135813596938),(10181),(10277020875)\left(\begin{array}{rr} 674 & 1359 \\ 351 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 12 & 217 \end{array}\right),\left(\begin{array}{rr} 1351 & 18 \\ 1350 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 13 & 12 \\ 1304 & 1309 \end{array}\right),\left(\begin{array}{rr} 155 & 18 \\ 702 & 1103 \end{array}\right),\left(\begin{array}{rr} 1358 & 1359 \\ 693 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1027 & 702 \\ 0 & 875 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1368])K:=\Q(E[1368]) is a degree-51060326405106032640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1368Z)\GL_2(\Z/1368\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 361=192 361 = 19^{2}
1919 additive 7474 64=26 64 = 2^{6}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 23104bv consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 722f2, its twist by 8-8.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(114)\Q(\sqrt{-114}) Z/3Z\Z/3\Z not in database
33 3.1.2888.1 Z/2Z\Z/2\Z not in database
66 6.0.66724352.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.11409864192.2 Z/3Z\Z/3\Z not in database
66 6.0.34229592576.4 Z/6Z\Z/6\Z not in database
1212 12.2.822897783339512496128.60 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.15537737306818501852959167607262899339264.3 Z/9Z\Z/9\Z not in database
1818 18.2.1485393179874874809517382565888.1 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord ss ord ord ord ord add ord ss ord ord ord ord ss
λ\lambda-invariant(s) - 1 1,1 1 1 1 3 - 1 1,1 1 1 1 1 1,1
μ\mu-invariant(s) - 1 0,0 0 0 0 0 - 0 0,0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.