Properties

Label 2320.a
Number of curves $2$
Conductor $2320$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 2320.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2320.a1 2320c2 \([0, 1, 0, -156, 700]\) \(1650587344/725\) \(185600\) \([2]\) \(512\) \(-0.029974\)  
2320.a2 2320c1 \([0, 1, 0, -11, 4]\) \(10061824/4205\) \(67280\) \([2]\) \(256\) \(-0.37655\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2320.a have rank \(1\).

Complex multiplication

The elliptic curves in class 2320.a do not have complex multiplication.

Modular form 2320.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} - 4 q^{7} + q^{9} + 6 q^{13} + 2 q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.