Properties

Label 2320.b
Number of curves $2$
Conductor $2320$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 2320.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2320.b1 2320b2 \([0, 1, 0, -676, 6540]\) \(133649126224/105125\) \(26912000\) \([2]\) \(768\) \(0.35650\)  
2320.b2 2320b1 \([0, 1, 0, -51, 40]\) \(934979584/453125\) \(7250000\) \([2]\) \(384\) \(0.0099236\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2320.b have rank \(1\).

Complex multiplication

The elliptic curves in class 2320.b do not have complex multiplication.

Modular form 2320.2.a.b

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + 4 q^{7} + q^{9} - 2 q^{13} + 2 q^{15} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.