Properties

Label 232050.dz
Number of curves 44
Conductor 232050232050
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dz1")
 
E.isogeny_class()
 

Elliptic curves in class 232050.dz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
232050.dz1 232050dz3 [1,1,1,5065438,4385588531][1, 1, 1, -5065438, 4385588531] 919929834039591549721/90169756021800919929834039591549721/90169756021800 14089024378406250001408902437840625000 [2][2] 88473608847360 2.51782.5178  
232050.dz2 232050dz4 [1,1,1,1887438,951155469][1, 1, 1, -1887438, -951155469] 47590666162724706841/256918508437500047590666162724706841/2569185084375000 4014351694335937500040143516943359375000 [2][2] 88473608847360 2.51782.5178  
232050.dz3 232050dz2 [1,1,1,340438,57488531][1, 1, 1, -340438, 57488531] 279265866686253721/69785974440000279265866686253721/69785974440000 10904058506250000001090405850625000000 [2,2][2, 2] 44236804423680 2.17122.1712  
232050.dz4 232050dz1 [1,1,1,51562,5744531][1, 1, 1, 51562, 5744531] 970269597296999/1467060940800970269597296999/1467060940800 22922827200000000-22922827200000000 [2][2] 22118402211840 1.82461.8246 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 232050.dz have rank 11.

Complex multiplication

The elliptic curves in class 232050.dz do not have complex multiplication.

Modular form 232050.2.a.dz

sage: E.q_eigenform(10)
 
q+q2q3+q4q6q7+q8+q94q11q12q13q14+q16+q17+q18+4q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - 4 q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.