Properties

Label 232050.dz
Number of curves $4$
Conductor $232050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dz1")
 
E.isogeny_class()
 

Elliptic curves in class 232050.dz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
232050.dz1 232050dz3 \([1, 1, 1, -5065438, 4385588531]\) \(919929834039591549721/90169756021800\) \(1408902437840625000\) \([2]\) \(8847360\) \(2.5178\)  
232050.dz2 232050dz4 \([1, 1, 1, -1887438, -951155469]\) \(47590666162724706841/2569185084375000\) \(40143516943359375000\) \([2]\) \(8847360\) \(2.5178\)  
232050.dz3 232050dz2 \([1, 1, 1, -340438, 57488531]\) \(279265866686253721/69785974440000\) \(1090405850625000000\) \([2, 2]\) \(4423680\) \(2.1712\)  
232050.dz4 232050dz1 \([1, 1, 1, 51562, 5744531]\) \(970269597296999/1467060940800\) \(-22922827200000000\) \([2]\) \(2211840\) \(1.8246\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 232050.dz have rank \(1\).

Complex multiplication

The elliptic curves in class 232050.dz do not have complex multiplication.

Modular form 232050.2.a.dz

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - 4 q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.