E = EllipticCurve("dz1")
E.isogeny_class()
Elliptic curves in class 232050.dz
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
232050.dz1 |
232050dz3 |
[1,1,1,−5065438,4385588531] |
919929834039591549721/90169756021800 |
1408902437840625000 |
[2] |
8847360 |
2.5178
|
|
232050.dz2 |
232050dz4 |
[1,1,1,−1887438,−951155469] |
47590666162724706841/2569185084375000 |
40143516943359375000 |
[2] |
8847360 |
2.5178
|
|
232050.dz3 |
232050dz2 |
[1,1,1,−340438,57488531] |
279265866686253721/69785974440000 |
1090405850625000000 |
[2,2] |
4423680 |
2.1712
|
|
232050.dz4 |
232050dz1 |
[1,1,1,51562,5744531] |
970269597296999/1467060940800 |
−22922827200000000 |
[2] |
2211840 |
1.8246
|
Γ0(N)-optimal |
The elliptic curves in class 232050.dz have
rank 1.
The elliptic curves in class 232050.dz do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.