Show commands:
SageMath
E = EllipticCurve("ev1")
E.isogeny_class()
Elliptic curves in class 232050.ev
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
232050.ev1 | 232050ev1 | \([1, 1, 1, -12338, 292031]\) | \(13293525831769/5251384320\) | \(82052880000000\) | \([2]\) | \(1105920\) | \(1.3683\) | \(\Gamma_0(N)\)-optimal |
232050.ev2 | 232050ev2 | \([1, 1, 1, 39662, 2164031]\) | \(441597730070951/383060714400\) | \(-5985323662500000\) | \([2]\) | \(2211840\) | \(1.7149\) |
Rank
sage: E.rank()
The elliptic curves in class 232050.ev have rank \(1\).
Complex multiplication
The elliptic curves in class 232050.ev do not have complex multiplication.Modular form 232050.2.a.ev
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.