Properties

Label 232050.ev
Number of curves 22
Conductor 232050232050
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ev1")
 
E.isogeny_class()
 

Elliptic curves in class 232050.ev

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
232050.ev1 232050ev1 [1,1,1,12338,292031][1, 1, 1, -12338, 292031] 13293525831769/525138432013293525831769/5251384320 8205288000000082052880000000 [2][2] 11059201105920 1.36831.3683 Γ0(N)\Gamma_0(N)-optimal
232050.ev2 232050ev2 [1,1,1,39662,2164031][1, 1, 1, 39662, 2164031] 441597730070951/383060714400441597730070951/383060714400 5985323662500000-5985323662500000 [2][2] 22118402211840 1.71491.7149  

Rank

sage: E.rank()
 

The elliptic curves in class 232050.ev have rank 11.

Complex multiplication

The elliptic curves in class 232050.ev do not have complex multiplication.

Modular form 232050.2.a.ev

sage: E.q_eigenform(10)
 
q+q2q3+q4q6q7+q8+q9+6q11q12q13q14+q16+q17+q186q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} + 6 q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + q^{17} + q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.