Show commands:
SageMath
E = EllipticCurve("fz1")
E.isogeny_class()
Elliptic curves in class 232050.fz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
232050.fz1 | 232050fz1 | \([1, 0, 0, 223497563387, -24050365678645183]\) | \(1975431947052366089861272646117398175/1542994369104841295218241880195072\) | \(-964371480690525809511401175121920000\) | \([]\) | \(4575605760\) | \(5.5927\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 232050.fz1 has rank \(1\).
Complex multiplication
The elliptic curves in class 232050.fz do not have complex multiplication.Modular form 232050.2.a.fz
sage: E.q_eigenform(10)