Properties

Label 232050hi1
Conductor 232050232050
Discriminant 1.444×1019-1.444\times 10^{19}
j-invariant 411489443735751478389027752 \frac{41148944373575}{1478389027752}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+153737x181319983y^2+xy=x^3+153737x-181319983 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+153737xz2181319983z3y^2z+xyz=x^3+153737xz^2-181319983z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+199243125x8460262856250y^2=x^3+199243125x-8460262856250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, 153737, -181319983])
 
gp: E = ellinit([1, 0, 0, 153737, -181319983])
 
magma: E := EllipticCurve([1, 0, 0, 153737, -181319983]);
 
oscar: E = elliptic_curve([1, 0, 0, 153737, -181319983])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  232050 232050  = 2352713172 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  14437392849140625000-14437392849140625000 = 1233105107213173-1 \cdot 2^{3} \cdot 3^{10} \cdot 5^{10} \cdot 7^{2} \cdot 13 \cdot 17^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  411489443735751478389027752 \frac{41148944373575}{1478389027752}  = 2331052721311731180732^{-3} \cdot 3^{-10} \cdot 5^{2} \cdot 7^{-2} \cdot 13^{-1} \cdot 17^{-3} \cdot 11807^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.35627944881423622243403954222.3562794488142362224340395422
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.01508118845248591026674009781.0150811884524859102667400978
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93724888589206660.9372488858920666
Szpiro ratio: σm\sigma_{m} ≈ 4.1728897212518324.172889721251832

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.106959887990272787166088944430.10695988799027278716608894443
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 60 60  = 3(25)1211 3\cdot( 2 \cdot 5 )\cdot1\cdot2\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 6.41759327941636722996533666596.4175932794163672299653366659
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.417593279L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1069601.00000060126.417593279\displaystyle 6.417593279 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.106960 \cdot 1.000000 \cdot 60}{1^2} \approx 6.417593279

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 232050.2.a.hi

q+q2+q3+q4+q6+q7+q8+q9+q11+q12q13+q14+q16q17+q182q19+O(q20) q + q^{2} + q^{3} + q^{4} + q^{6} + q^{7} + q^{8} + q^{9} + q^{11} + q^{12} - q^{13} + q^{14} + q^{16} - q^{17} + q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5875200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 I3I_{3} split multiplicative -1 1 3 3
33 1010 I10I_{10} split multiplicative -1 1 10 10
55 11 IIII^{*} additive 1 2 10 0
77 22 I2I_{2} split multiplicative -1 1 2 2
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 11 I3I_{3} nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1767, 2, 1766, 3], [1327, 2, 1327, 3], [1497, 2, 1497, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 1767, 0], [885, 2, 885, 3], [105, 2, 105, 3]]
 
GL(2,Integers(1768)).subgroup(gens)
 
Gens := [[1767, 2, 1766, 3], [1327, 2, 1327, 3], [1497, 2, 1497, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 1767, 0], [885, 2, 885, 3], [105, 2, 105, 3]];
 
sub<GL(2,Integers(1768))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1768=231317 1768 = 2^{3} \cdot 13 \cdot 17 , index 22, genus 00, and generators

(1767217663),(1327213273),(1497214973),(1021),(1201),(1117670),(88528853),(10521053)\left(\begin{array}{rr} 1767 & 2 \\ 1766 & 3 \end{array}\right),\left(\begin{array}{rr} 1327 & 2 \\ 1327 & 3 \end{array}\right),\left(\begin{array}{rr} 1497 & 2 \\ 1497 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1767 & 0 \end{array}\right),\left(\begin{array}{rr} 885 & 2 \\ 885 & 3 \end{array}\right),\left(\begin{array}{rr} 105 & 2 \\ 105 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1768])K:=\Q(E[1768]) is a degree-15767269539841576726953984 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1768Z)\GL_2(\Z/1768\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 5525=521317 5525 = 5^{2} \cdot 13 \cdot 17
33 split multiplicative 44 2275=52713 2275 = 5^{2} \cdot 7 \cdot 13
55 additive 22 3094=271317 3094 = 2 \cdot 7 \cdot 13 \cdot 17
77 split multiplicative 88 33150=23521317 33150 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17
1313 nonsplit multiplicative 1414 17850=2352717 17850 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17
1717 nonsplit multiplicative 1818 13650=2352713 13650 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 232050hi consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 232050o1, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.44200.1 Z/2Z\Z/2\Z not in database
66 6.0.3454035520000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.