Properties

Label 232050o1
Conductor 232050232050
Discriminant 9.240×1014-9.240\times 10^{14}
j-invariant 411489443735751478389027752 \frac{41148944373575}{1478389027752}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+6150x1448100y^2+xy=x^3+x^2+6150x-1448100 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+6150xz21448100z3y^2z+xyz=x^3+x^2z+6150xz^2-1448100z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+7969725x67682102850y^2=x^3+7969725x-67682102850 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 6150, -1448100])
 
gp: E = ellinit([1, 1, 0, 6150, -1448100])
 
magma: E := EllipticCurve([1, 1, 0, 6150, -1448100]);
 
oscar: E = elliptic_curve([1, 1, 0, 6150, -1448100])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(591,14163)(591, 14163)0.889633172956703287599675866560.88963317295670328759967586656\infty
(115,835)(115, 835)1.36769710563303633641872320221.3676971056330363364187232022\infty

Integral points

(105,555) \left(105, 555\right) , (105,660) \left(105, -660\right) , (115,835) \left(115, 835\right) , (115,950) \left(115, -950\right) , (149,1600) \left(149, 1600\right) , (149,1749) \left(149, -1749\right) , (591,14163) \left(591, 14163\right) , (591,14754) \left(591, -14754\right) , (845,24235) \left(845, 24235\right) , (845,25080) \left(845, -25080\right) , (5435,398050) \left(5435, 398050\right) , (5435,403485) \left(5435, -403485\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  232050 232050  = 2352713172 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  923993142345000-923993142345000 = 123310547213173-1 \cdot 2^{3} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2} \cdot 13 \cdot 17^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  411489443735751478389027752 \frac{41148944373575}{1478389027752}  = 2331052721311731180732^{-3} \cdot 3^{-10} \cdot 5^{2} \cdot 7^{-2} \cdot 13^{-1} \cdot 17^{-3} \cdot 11807^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.55156049259718603513365987561.5515604925971860351336598756
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.01508118845248591026674009791.0150811884524859102667400979
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93724888589206660.9372488858920666
Szpiro ratio: σm\sigma_{m} ≈ 3.3912745376692773.391274537669277

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.04845332419698962814742724591.0484533241969896281474272459
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.239169580412013316823245726010.23916958041201331682324572601
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 36 36  = 123213 1\cdot2\cdot3\cdot2\cdot1\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 9.02729309867188481754488896089.0272930986718848175448889608
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.027293099L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2391701.04845336129.027293099\displaystyle 9.027293099 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.239170 \cdot 1.048453 \cdot 36}{1^2} \approx 9.027293099

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 232050.2.a.o

qq2q3+q4+q6q7q8+q9+q11q12+q13+q14+q16+q17q182q19+O(q20) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + q^{11} - q^{12} + q^{13} + q^{14} + q^{16} + q^{17} - q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1175040
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I3I_{3} nonsplit multiplicative 1 1 3 3
33 22 I10I_{10} nonsplit multiplicative 1 1 10 10
55 33 IVIV additive -1 2 4 0
77 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1313 11 I1I_{1} split multiplicative -1 1 1 1
1717 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1767, 2, 1766, 3], [1327, 2, 1327, 3], [1497, 2, 1497, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 1767, 0], [885, 2, 885, 3], [105, 2, 105, 3]]
 
GL(2,Integers(1768)).subgroup(gens)
 
Gens := [[1767, 2, 1766, 3], [1327, 2, 1327, 3], [1497, 2, 1497, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 1767, 0], [885, 2, 885, 3], [105, 2, 105, 3]];
 
sub<GL(2,Integers(1768))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1768=231317 1768 = 2^{3} \cdot 13 \cdot 17 , index 22, genus 00, and generators

(1767217663),(1327213273),(1497214973),(1021),(1201),(1117670),(88528853),(10521053)\left(\begin{array}{rr} 1767 & 2 \\ 1766 & 3 \end{array}\right),\left(\begin{array}{rr} 1327 & 2 \\ 1327 & 3 \end{array}\right),\left(\begin{array}{rr} 1497 & 2 \\ 1497 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1767 & 0 \end{array}\right),\left(\begin{array}{rr} 885 & 2 \\ 885 & 3 \end{array}\right),\left(\begin{array}{rr} 105 & 2 \\ 105 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1768])K:=\Q(E[1768]) is a degree-15767269539841576726953984 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1768Z)\GL_2(\Z/1768\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 5525=521317 5525 = 5^{2} \cdot 13 \cdot 17
33 nonsplit multiplicative 44 2275=52713 2275 = 5^{2} \cdot 7 \cdot 13
55 additive 1414 3094=271317 3094 = 2 \cdot 7 \cdot 13 \cdot 17
77 nonsplit multiplicative 88 33150=23521317 33150 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17
1313 split multiplicative 1414 17850=2352717 17850 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17
1717 split multiplicative 1818 13650=2352713 13650 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 232050o consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.44200.1 Z/2Z\Z/2\Z not in database
66 6.0.3454035520000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.7592405385166875.16 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.