y 2 + x y = x 3 + x 2 − 97400 x − 11740500 y^2+xy=x^3+x^2-97400x-11740500 y 2 + x y = x 3 + x 2 − 9 7 4 0 0 x − 1 1 7 4 0 5 0 0
(homogenize , simplify )
y 2 z + x y z = x 3 + x 2 z − 97400 x z 2 − 11740500 z 3 y^2z+xyz=x^3+x^2z-97400xz^2-11740500z^3 y 2 z + x y z = x 3 + x 2 z − 9 7 4 0 0 x z 2 − 1 1 7 4 0 5 0 0 z 3
(dehomogenize , simplify )
y 2 = x 3 − 126231075 x − 545871305250 y^2=x^3-126231075x-545871305250 y 2 = x 3 − 1 2 6 2 3 1 0 7 5 x − 5 4 5 8 7 1 3 0 5 2 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, 1, 0, -97400, -11740500])
gp: E = ellinit([1, 1, 0, -97400, -11740500])
magma: E := EllipticCurve([1, 1, 0, -97400, -11740500]);
oscar: E = elliptic_curve([1, 1, 0, -97400, -11740500])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 181 , 80 ) (-181, 80) ( − 1 8 1 , 8 0 ) 1.7171500677331978305838402019 1.7171500677331978305838402019 1 . 7 1 7 1 5 0 0 6 7 7 3 3 1 9 7 8 3 0 5 8 3 8 4 0 2 0 1 9 ∞ \infty ∞
( − 180 , 90 ) (-180, 90) ( − 1 8 0 , 9 0 ) 0 0 0 2 2 2
( − 181 , 101 ) \left(-181, 101\right) ( − 1 8 1 , 1 0 1 ) , ( − 181 , 80 ) \left(-181, 80\right) ( − 1 8 1 , 8 0 ) , ( − 180 , 90 ) \left(-180, 90\right) ( − 1 8 0 , 9 0 ) , ( 470 , 6590 ) \left(470, 6590\right) ( 4 7 0 , 6 5 9 0 ) , ( 470 , − 7060 ) \left(470, -7060\right) ( 4 7 0 , − 7 0 6 0 ) , ( 781 , 19341 ) \left(781, 19341\right) ( 7 8 1 , 1 9 3 4 1 ) , ( 781 , − 20122 ) \left(781, -20122\right) ( 7 8 1 , − 2 0 1 2 2 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
232050 232050 2 3 2 0 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 13 ⋅ 17 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 1 3 ⋅ 1 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
1979676562500 1979676562500 1 9 7 9 6 7 6 5 6 2 5 0 0 = 2 2 ⋅ 3 2 ⋅ 5 8 ⋅ 7 2 ⋅ 1 3 2 ⋅ 17 2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 7^{2} \cdot 13^{2} \cdot 17 2 2 ⋅ 3 2 ⋅ 5 8 ⋅ 7 2 ⋅ 1 3 2 ⋅ 1 7
sage: E.discriminant().factor()
j-invariant :
j j j
=
6540147208441729 126699300 \frac{6540147208441729}{126699300} 1 2 6 6 9 9 3 0 0 6 5 4 0 1 4 7 2 0 8 4 4 1 7 2 9 = 2 − 2 ⋅ 3 − 2 ⋅ 5 − 2 ⋅ 7 − 2 ⋅ 1 3 − 2 ⋅ 1 7 − 1 ⋅ 18700 9 3 2^{-2} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{-2} \cdot 17^{-1} \cdot 187009^{3} 2 − 2 ⋅ 3 − 2 ⋅ 5 − 2 ⋅ 7 − 2 ⋅ 1 3 − 2 ⋅ 1 7 − 1 ⋅ 1 8 7 0 0 9 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.4820499436496727203929141850 1.4820499436496727203929141850 1 . 4 8 2 0 4 9 9 4 3 6 4 9 6 7 2 7 2 0 3 9 2 9 1 4 1 8 5 0
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.67733098743262253309253451839 0.67733098743262253309253451839 0 . 6 7 7 3 3 0 9 8 7 4 3 2 6 2 2 5 3 3 0 9 2 5 3 4 5 1 8 3 9
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.8862129667256784 0.8862129667256784 0 . 8 8 6 2 1 2 9 6 6 7 2 5 6 7 8 4
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.7292150493693663 3.7292150493693663 3 . 7 2 9 2 1 5 0 4 9 3 6 9 3 6 6 3
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.7171500677331978305838402019 1.7171500677331978305838402019 1 . 7 1 7 1 5 0 0 6 7 7 3 3 1 9 7 8 3 0 5 8 3 8 4 0 2 0 1 9
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.27024628944617689682453562254 0.27024628944617689682453562254 0 . 2 7 0 2 4 6 2 8 9 4 4 6 1 7 6 8 9 6 8 2 4 5 3 5 6 2 2 5 4
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 32 32 3 2
= 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 1 2\cdot2\cdot2\cdot2\cdot2\cdot1 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 3.7124274738171843553709830578 3.7124274738171843553709830578 3 . 7 1 2 4 2 7 4 7 3 8 1 7 1 8 4 3 5 5 3 7 0 9 8 3 0 5 7 8
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.712427474 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.270246 ⋅ 1.717150 ⋅ 32 2 2 ≈ 3.712427474 \displaystyle 3.712427474 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.270246 \cdot 1.717150 \cdot 32}{2^2} \approx 3.712427474 3 . 7 1 2 4 2 7 4 7 4 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 2 7 0 2 4 6 ⋅ 1 . 7 1 7 1 5 0 ⋅ 3 2 ≈ 3 . 7 1 2 4 2 7 4 7 4
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
232050.2.a.r
q − q 2 − q 3 + q 4 + q 6 − q 7 − q 8 + q 9 + 2 q 11 − q 12 + q 13 + q 14 + q 16 + q 17 − q 18 − 4 q 19 + O ( q 20 ) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} + q^{13} + q^{14} + q^{16} + q^{17} - q^{18} - 4 q^{19} + O(q^{20}) q − q 2 − q 3 + q 4 + q 6 − q 7 − q 8 + q 9 + 2 q 1 1 − q 1 2 + q 1 3 + q 1 4 + q 1 6 + q 1 7 − q 1 8 − 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 6 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[210, 1, 1663, 0], [1, 2, 2, 5], [1, 4, 0, 1], [1765, 4, 1764, 5], [225, 1548, 1104, 663], [1, 0, 4, 1], [1497, 4, 1226, 9], [3, 4, 8, 11], [885, 4, 2, 9]]
GL(2,Integers(1768)).subgroup(gens)
Gens := [[210, 1, 1663, 0], [1, 2, 2, 5], [1, 4, 0, 1], [1765, 4, 1764, 5], [225, 1548, 1104, 663], [1, 0, 4, 1], [1497, 4, 1226, 9], [3, 4, 8, 11], [885, 4, 2, 9]];
sub<GL(2,Integers(1768))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 1768 = 2 3 ⋅ 13 ⋅ 17 1768 = 2^{3} \cdot 13 \cdot 17 1 7 6 8 = 2 3 ⋅ 1 3 ⋅ 1 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 210 1 1663 0 ) , ( 1 2 2 5 ) , ( 1 4 0 1 ) , ( 1765 4 1764 5 ) , ( 225 1548 1104 663 ) , ( 1 0 4 1 ) , ( 1497 4 1226 9 ) , ( 3 4 8 11 ) , ( 885 4 2 9 ) \left(\begin{array}{rr}
210 & 1 \\
1663 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1765 & 4 \\
1764 & 5
\end{array}\right),\left(\begin{array}{rr}
225 & 1548 \\
1104 & 663
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
1497 & 4 \\
1226 & 9
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right),\left(\begin{array}{rr}
885 & 4 \\
2 & 9
\end{array}\right) ( 2 1 0 1 6 6 3 1 0 ) , ( 1 2 2 5 ) , ( 1 0 4 1 ) , ( 1 7 6 5 1 7 6 4 4 5 ) , ( 2 2 5 1 1 0 4 1 5 4 8 6 6 3 ) , ( 1 4 0 1 ) , ( 1 4 9 7 1 2 2 6 4 9 ) , ( 3 8 4 1 1 ) , ( 8 8 5 2 4 9 ) .
The torsion field K : = Q ( E [ 1768 ] ) K:=\Q(E[1768]) K : = Q ( E [ 1 7 6 8 ] ) is a degree-262787825664 262787825664 2 6 2 7 8 7 8 2 5 6 6 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 1768 Z ) \GL_2(\Z/1768\Z) GL 2 ( Z / 1 7 6 8 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
425 = 5 2 ⋅ 17 425 = 5^{2} \cdot 17 4 2 5 = 5 2 ⋅ 1 7
3 3 3
nonsplit multiplicative
4 4 4
77350 = 2 ⋅ 5 2 ⋅ 7 ⋅ 13 ⋅ 17 77350 = 2 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 7 7 3 5 0 = 2 ⋅ 5 2 ⋅ 7 ⋅ 1 3 ⋅ 1 7
5 5 5
additive
18 18 1 8
9282 = 2 ⋅ 3 ⋅ 7 ⋅ 13 ⋅ 17 9282 = 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 9 2 8 2 = 2 ⋅ 3 ⋅ 7 ⋅ 1 3 ⋅ 1 7
7 7 7
nonsplit multiplicative
8 8 8
33150 = 2 ⋅ 3 ⋅ 5 2 ⋅ 13 ⋅ 17 33150 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 3 3 1 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 1 3 ⋅ 1 7
13 13 1 3
split multiplicative
14 14 1 4
17850 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 17 17850 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 1 7 8 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 1 7
17 17 1 7
split multiplicative
18 18 1 8
13650 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 13 13650 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 1 3 6 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 1 3
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 232050r
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
46410cc1 , its twist by 5 5 5 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 17 ) \Q(\sqrt{17}) Q ( 1 7 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.4596800.1
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.0.6106734799360000.64
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.