Properties

Label 232050u2
Conductor 232050232050
Discriminant 1.695×1029-1.695\times 10^{29}
j-invariant 907893250163924035198266172710847124527712371223290784 \frac{9078932501639240351982661727}{10847124527712371223290784}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+1086534950x14222668887500y^2+xy=x^3+x^2+1086534950x-14222668887500 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+1086534950xz214222668887500z3y^2z+xyz=x^3+x^2z+1086534950xz^2-14222668887500z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+1408149294525x663593961854621250y^2=x^3+1408149294525x-663593961854621250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 1086534950, -14222668887500])
 
gp: E = ellinit([1, 1, 0, 1086534950, -14222668887500])
 
magma: E := EllipticCurve([1, 1, 0, 1086534950, -14222668887500]);
 
oscar: E = elliptic_curve([1, 1, 0, 1086534950, -14222668887500])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(60259,16403515)(60259, 16403515)2.13075662443538287076187583872.1307566244353828707618758387\infty
(46555/4,46555/8)(46555/4, -46555/8)0022

Integral points

(12341,1026296) \left(12341, 1026296\right) , (12341,1038637) \left(12341, -1038637\right) , (42345,10357540) \left(42345, 10357540\right) , (42345,10399885) \left(42345, -10399885\right) , (60259,16403515) \left(60259, 16403515\right) , (60259,16463774) \left(60259, -16463774\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  232050 232050  = 2352713172 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  169486320745505800363918500000-169486320745505800363918500000 = 125385678135176-1 \cdot 2^{5} \cdot 3^{8} \cdot 5^{6} \cdot 7^{8} \cdot 13^{5} \cdot 17^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  907893250163924035198266172710847124527712371223290784 \frac{9078932501639240351982661727}{10847124527712371223290784}  = 2538781351762937193610732^{-5} \cdot 3^{-8} \cdot 7^{-8} \cdot 13^{-5} \cdot 17^{-6} \cdot 29^{3} \cdot 71936107^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 4.29476574243330597930133019604.2947657424333059793013301960
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 3.49004678621625579200095052943.4900467862162557920009505294
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03641086229183551.0364108622918355
Szpiro ratio: σm\sigma_{m} ≈ 5.9973027891447755.997302789144775

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.13075662443538287076187583872.1307566244353828707618758387
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0172870316828249177928601871570.017287031682824917792860187157
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 480 480  = 122225(23) 1\cdot2\cdot2^{2}\cdot2\cdot5\cdot( 2 \cdot 3 )
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.42013487300042457204945414424.4201348730004245720494541442
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.420134873L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0172872.130757480224.420134873\displaystyle 4.420134873 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.017287 \cdot 2.130757 \cdot 480}{2^2} \approx 4.420134873

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 232050.2.a.u

qq2q3+q4+q6q7q8+q9+2q11q12+q13+q14+q16+q17q18+8q19+O(q20) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} + q^{13} + q^{14} + q^{16} + q^{17} - q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 412876800
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I5I_{5} nonsplit multiplicative 1 1 5 5
33 22 I8I_{8} nonsplit multiplicative 1 1 8 8
55 44 I0I_0^{*} additive 1 2 6 0
77 22 I8I_{8} nonsplit multiplicative 1 1 8 8
1313 55 I5I_{5} split multiplicative -1 1 5 5
1717 66 I6I_{6} split multiplicative -1 1 6 6

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1226, 1, 271, 0], [1, 2, 2, 5], [1548, 225, 1105, 664], [1, 4, 0, 1], [1765, 4, 1764, 5], [2, 1, 883, 0], [1, 0, 4, 1], [3, 4, 8, 11], [105, 4, 210, 9]]
 
GL(2,Integers(1768)).subgroup(gens)
 
Gens := [[1226, 1, 271, 0], [1, 2, 2, 5], [1548, 225, 1105, 664], [1, 4, 0, 1], [1765, 4, 1764, 5], [2, 1, 883, 0], [1, 0, 4, 1], [3, 4, 8, 11], [105, 4, 210, 9]];
 
sub<GL(2,Integers(1768))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1768=231317 1768 = 2^{3} \cdot 13 \cdot 17 , index 1212, genus 00, and generators

(122612710),(1225),(15482251105664),(1401),(1765417645),(218830),(1041),(34811),(10542109)\left(\begin{array}{rr} 1226 & 1 \\ 271 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1548 & 225 \\ 1105 & 664 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1765 & 4 \\ 1764 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 883 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 105 & 4 \\ 210 & 9 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1768])K:=\Q(E[1768]) is a degree-262787825664262787825664 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1768Z)\GL_2(\Z/1768\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 325=5213 325 = 5^{2} \cdot 13
33 nonsplit multiplicative 44 4550=252713 4550 = 2 \cdot 5^{2} \cdot 7 \cdot 13
55 additive 1414 357=3717 357 = 3 \cdot 7 \cdot 17
77 nonsplit multiplicative 88 33150=23521317 33150 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17
1313 split multiplicative 1414 17850=2352717 17850 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17
1717 split multiplicative 1818 13650=2352713 13650 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 232050u consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 9282u2, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(26)\Q(\sqrt{-26}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.3005600.2 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.