y 2 + x y = x 3 + x 2 + 1086534950 x − 14222668887500 y^2+xy=x^3+x^2+1086534950x-14222668887500 y 2 + x y = x 3 + x 2 + 1 0 8 6 5 3 4 9 5 0 x − 1 4 2 2 2 6 6 8 8 8 7 5 0 0
(homogenize , simplify )
y 2 z + x y z = x 3 + x 2 z + 1086534950 x z 2 − 14222668887500 z 3 y^2z+xyz=x^3+x^2z+1086534950xz^2-14222668887500z^3 y 2 z + x y z = x 3 + x 2 z + 1 0 8 6 5 3 4 9 5 0 x z 2 − 1 4 2 2 2 6 6 8 8 8 7 5 0 0 z 3
(dehomogenize , simplify )
y 2 = x 3 + 1408149294525 x − 663593961854621250 y^2=x^3+1408149294525x-663593961854621250 y 2 = x 3 + 1 4 0 8 1 4 9 2 9 4 5 2 5 x − 6 6 3 5 9 3 9 6 1 8 5 4 6 2 1 2 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, 1, 0, 1086534950, -14222668887500])
gp: E = ellinit([1, 1, 0, 1086534950, -14222668887500])
magma: E := EllipticCurve([1, 1, 0, 1086534950, -14222668887500]);
oscar: E = elliptic_curve([1, 1, 0, 1086534950, -14222668887500])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 60259 , 16403515 ) (60259, 16403515) ( 6 0 2 5 9 , 1 6 4 0 3 5 1 5 ) 2.1307566244353828707618758387 2.1307566244353828707618758387 2 . 1 3 0 7 5 6 6 2 4 4 3 5 3 8 2 8 7 0 7 6 1 8 7 5 8 3 8 7 ∞ \infty ∞
( 46555 / 4 , − 46555 / 8 ) (46555/4, -46555/8) ( 4 6 5 5 5 / 4 , − 4 6 5 5 5 / 8 ) 0 0 0 2 2 2
( 12341 , 1026296 ) \left(12341, 1026296\right) ( 1 2 3 4 1 , 1 0 2 6 2 9 6 ) , ( 12341 , − 1038637 ) \left(12341, -1038637\right) ( 1 2 3 4 1 , − 1 0 3 8 6 3 7 ) , ( 42345 , 10357540 ) \left(42345, 10357540\right) ( 4 2 3 4 5 , 1 0 3 5 7 5 4 0 ) , ( 42345 , − 10399885 ) \left(42345, -10399885\right) ( 4 2 3 4 5 , − 1 0 3 9 9 8 8 5 ) , ( 60259 , 16403515 ) \left(60259, 16403515\right) ( 6 0 2 5 9 , 1 6 4 0 3 5 1 5 ) , ( 60259 , − 16463774 ) \left(60259, -16463774\right) ( 6 0 2 5 9 , − 1 6 4 6 3 7 7 4 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
232050 232050 2 3 2 0 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 13 ⋅ 17 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 1 3 ⋅ 1 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 169486320745505800363918500000 -169486320745505800363918500000 − 1 6 9 4 8 6 3 2 0 7 4 5 5 0 5 8 0 0 3 6 3 9 1 8 5 0 0 0 0 0 = − 1 ⋅ 2 5 ⋅ 3 8 ⋅ 5 6 ⋅ 7 8 ⋅ 1 3 5 ⋅ 1 7 6 -1 \cdot 2^{5} \cdot 3^{8} \cdot 5^{6} \cdot 7^{8} \cdot 13^{5} \cdot 17^{6} − 1 ⋅ 2 5 ⋅ 3 8 ⋅ 5 6 ⋅ 7 8 ⋅ 1 3 5 ⋅ 1 7 6
sage: E.discriminant().factor()
j-invariant :
j j j
=
9078932501639240351982661727 10847124527712371223290784 \frac{9078932501639240351982661727}{10847124527712371223290784} 1 0 8 4 7 1 2 4 5 2 7 7 1 2 3 7 1 2 2 3 2 9 0 7 8 4 9 0 7 8 9 3 2 5 0 1 6 3 9 2 4 0 3 5 1 9 8 2 6 6 1 7 2 7 = 2 − 5 ⋅ 3 − 8 ⋅ 7 − 8 ⋅ 1 3 − 5 ⋅ 1 7 − 6 ⋅ 2 9 3 ⋅ 7193610 7 3 2^{-5} \cdot 3^{-8} \cdot 7^{-8} \cdot 13^{-5} \cdot 17^{-6} \cdot 29^{3} \cdot 71936107^{3} 2 − 5 ⋅ 3 − 8 ⋅ 7 − 8 ⋅ 1 3 − 5 ⋅ 1 7 − 6 ⋅ 2 9 3 ⋅ 7 1 9 3 6 1 0 7 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 4.2947657424333059793013301960 4.2947657424333059793013301960 4 . 2 9 4 7 6 5 7 4 2 4 3 3 3 0 5 9 7 9 3 0 1 3 3 0 1 9 6 0
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 3.4900467862162557920009505294 3.4900467862162557920009505294 3 . 4 9 0 0 4 6 7 8 6 2 1 6 2 5 5 7 9 2 0 0 0 9 5 0 5 2 9 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0364108622918355 1.0364108622918355 1 . 0 3 6 4 1 0 8 6 2 2 9 1 8 3 5 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 5.997302789144775 5.997302789144775 5 . 9 9 7 3 0 2 7 8 9 1 4 4 7 7 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 2.1307566244353828707618758387 2.1307566244353828707618758387 2 . 1 3 0 7 5 6 6 2 4 4 3 5 3 8 2 8 7 0 7 6 1 8 7 5 8 3 8 7
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.017287031682824917792860187157 0.017287031682824917792860187157 0 . 0 1 7 2 8 7 0 3 1 6 8 2 8 2 4 9 1 7 7 9 2 8 6 0 1 8 7 1 5 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 480 480 4 8 0
= 1 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 5 ⋅ ( 2 ⋅ 3 ) 1\cdot2\cdot2^{2}\cdot2\cdot5\cdot( 2 \cdot 3 ) 1 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 5 ⋅ ( 2 ⋅ 3 )
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 4.4201348730004245720494541442 4.4201348730004245720494541442 4 . 4 2 0 1 3 4 8 7 3 0 0 0 4 2 4 5 7 2 0 4 9 4 5 4 1 4 4 2
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.420134873 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.017287 ⋅ 2.130757 ⋅ 480 2 2 ≈ 4.420134873 \displaystyle 4.420134873 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.017287 \cdot 2.130757 \cdot 480}{2^2} \approx 4.420134873 4 . 4 2 0 1 3 4 8 7 3 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 0 1 7 2 8 7 ⋅ 2 . 1 3 0 7 5 7 ⋅ 4 8 0 ≈ 4 . 4 2 0 1 3 4 8 7 3
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
232050.2.a.u
q − q 2 − q 3 + q 4 + q 6 − q 7 − q 8 + q 9 + 2 q 11 − q 12 + q 13 + q 14 + q 16 + q 17 − q 18 + 8 q 19 + O ( q 20 ) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} + q^{13} + q^{14} + q^{16} + q^{17} - q^{18} + 8 q^{19} + O(q^{20}) q − q 2 − q 3 + q 4 + q 6 − q 7 − q 8 + q 9 + 2 q 1 1 − q 1 2 + q 1 3 + q 1 4 + q 1 6 + q 1 7 − q 1 8 + 8 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 6 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1226, 1, 271, 0], [1, 2, 2, 5], [1548, 225, 1105, 664], [1, 4, 0, 1], [1765, 4, 1764, 5], [2, 1, 883, 0], [1, 0, 4, 1], [3, 4, 8, 11], [105, 4, 210, 9]]
GL(2,Integers(1768)).subgroup(gens)
Gens := [[1226, 1, 271, 0], [1, 2, 2, 5], [1548, 225, 1105, 664], [1, 4, 0, 1], [1765, 4, 1764, 5], [2, 1, 883, 0], [1, 0, 4, 1], [3, 4, 8, 11], [105, 4, 210, 9]];
sub<GL(2,Integers(1768))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 1768 = 2 3 ⋅ 13 ⋅ 17 1768 = 2^{3} \cdot 13 \cdot 17 1 7 6 8 = 2 3 ⋅ 1 3 ⋅ 1 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1226 1 271 0 ) , ( 1 2 2 5 ) , ( 1548 225 1105 664 ) , ( 1 4 0 1 ) , ( 1765 4 1764 5 ) , ( 2 1 883 0 ) , ( 1 0 4 1 ) , ( 3 4 8 11 ) , ( 105 4 210 9 ) \left(\begin{array}{rr}
1226 & 1 \\
271 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
1548 & 225 \\
1105 & 664
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1765 & 4 \\
1764 & 5
\end{array}\right),\left(\begin{array}{rr}
2 & 1 \\
883 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right),\left(\begin{array}{rr}
105 & 4 \\
210 & 9
\end{array}\right) ( 1 2 2 6 2 7 1 1 0 ) , ( 1 2 2 5 ) , ( 1 5 4 8 1 1 0 5 2 2 5 6 6 4 ) , ( 1 0 4 1 ) , ( 1 7 6 5 1 7 6 4 4 5 ) , ( 2 8 8 3 1 0 ) , ( 1 4 0 1 ) , ( 3 8 4 1 1 ) , ( 1 0 5 2 1 0 4 9 ) .
The torsion field K : = Q ( E [ 1768 ] ) K:=\Q(E[1768]) K : = Q ( E [ 1 7 6 8 ] ) is a degree-262787825664 262787825664 2 6 2 7 8 7 8 2 5 6 6 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 1768 Z ) \GL_2(\Z/1768\Z) GL 2 ( Z / 1 7 6 8 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
325 = 5 2 ⋅ 13 325 = 5^{2} \cdot 13 3 2 5 = 5 2 ⋅ 1 3
3 3 3
nonsplit multiplicative
4 4 4
4550 = 2 ⋅ 5 2 ⋅ 7 ⋅ 13 4550 = 2 \cdot 5^{2} \cdot 7 \cdot 13 4 5 5 0 = 2 ⋅ 5 2 ⋅ 7 ⋅ 1 3
5 5 5
additive
14 14 1 4
357 = 3 ⋅ 7 ⋅ 17 357 = 3 \cdot 7 \cdot 17 3 5 7 = 3 ⋅ 7 ⋅ 1 7
7 7 7
nonsplit multiplicative
8 8 8
33150 = 2 ⋅ 3 ⋅ 5 2 ⋅ 13 ⋅ 17 33150 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 3 3 1 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 1 3 ⋅ 1 7
13 13 1 3
split multiplicative
14 14 1 4
17850 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 17 17850 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 1 7 8 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 1 7
17 17 1 7
split multiplicative
18 18 1 8
13650 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 13 13650 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 1 3 6 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 7 ⋅ 1 3
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 232050u
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
9282u2 , its twist by 5 5 5 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( − 26 ) \Q(\sqrt{-26}) Q ( − 2 6 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.2.3005600.2
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.