Properties

Label 232050x
Number of curves $4$
Conductor $232050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 232050x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
232050.x3 232050x1 \([1, 1, 0, -4550, 52500]\) \(666940371553/304152576\) \(4752384000000\) \([2]\) \(524288\) \(1.1275\) \(\Gamma_0(N)\)-optimal
232050.x2 232050x2 \([1, 1, 0, -36550, -2667500]\) \(345608484635233/5513953536\) \(86155524000000\) \([2, 2]\) \(1048576\) \(1.4740\)  
232050.x4 232050x3 \([1, 1, 0, -2550, -7393500]\) \(-117433042273/1510843540752\) \(-23606930324250000\) \([2]\) \(2097152\) \(1.8206\)  
232050.x1 232050x4 \([1, 1, 0, -582550, -171381500]\) \(1399279497274949473/364819728\) \(5700308250000\) \([2]\) \(2097152\) \(1.8206\)  

Rank

sage: E.rank()
 

The elliptic curves in class 232050x have rank \(1\).

Complex multiplication

The elliptic curves in class 232050x do not have complex multiplication.

Modular form 232050.2.a.x

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + 4 q^{11} - q^{12} - q^{13} + q^{14} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.