sage:E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 232050x
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
232050.x3 |
232050x1 |
[1,1,0,−4550,52500] |
666940371553/304152576 |
4752384000000 |
[2] |
524288 |
1.1275
|
Γ0(N)-optimal |
232050.x2 |
232050x2 |
[1,1,0,−36550,−2667500] |
345608484635233/5513953536 |
86155524000000 |
[2,2] |
1048576 |
1.4740
|
|
232050.x4 |
232050x3 |
[1,1,0,−2550,−7393500] |
−117433042273/1510843540752 |
−23606930324250000 |
[2] |
2097152 |
1.8206
|
|
232050.x1 |
232050x4 |
[1,1,0,−582550,−171381500] |
1399279497274949473/364819728 |
5700308250000 |
[2] |
2097152 |
1.8206
|
|
sage:E.rank()
The elliptic curves in class 232050x have
rank 1.
The elliptic curves in class 232050x do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.