Properties

Label 2320a
Number of curves 22
Conductor 23202320
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 2320a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2320.h2 2320a1 [0,1,0,11,10][0, -1, 0, -11, -10] 10061824/72510061824/725 1160011600 [2][2] 128128 0.47343-0.47343 Γ0(N)\Gamma_0(N)-optimal
2320.h1 2320a2 [0,1,0,36,80][0, -1, 0, -36, 80] 20720464/420520720464/4205 10764801076480 [2][2] 256256 0.12685-0.12685  

Rank

sage: E.rank()
 

The elliptic curves in class 2320a have rank 11.

Complex multiplication

The elliptic curves in class 2320a do not have complex multiplication.

Modular form 2320.2.a.a

sage: E.q_eigenform(10)
 
q+2q3q5+q94q112q132q154q19+O(q20)q + 2 q^{3} - q^{5} + q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.