Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 2320a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2320.h2 | 2320a1 | \([0, -1, 0, -11, -10]\) | \(10061824/725\) | \(11600\) | \([2]\) | \(128\) | \(-0.47343\) | \(\Gamma_0(N)\)-optimal |
2320.h1 | 2320a2 | \([0, -1, 0, -36, 80]\) | \(20720464/4205\) | \(1076480\) | \([2]\) | \(256\) | \(-0.12685\) |
Rank
sage: E.rank()
The elliptic curves in class 2320a have rank \(1\).
Complex multiplication
The elliptic curves in class 2320a do not have complex multiplication.Modular form 2320.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.