E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 2320d
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2320.f3 |
2320d1 |
[0,0,0,−242,−1449] |
97960237056/725 |
11600 |
[2] |
256 |
−0.043745
|
Γ0(N)-optimal |
2320.f2 |
2320d2 |
[0,0,0,−247,−1386] |
6509904336/525625 |
134560000 |
[2,2] |
512 |
0.30283
|
|
2320.f1 |
2320d3 |
[0,0,0,−827,7546] |
61085802564/11328125 |
11600000000 |
[4] |
1024 |
0.64940
|
|
2320.f4 |
2320d4 |
[0,0,0,253,−6286] |
1748981916/17682025 |
−18106393600 |
[4] |
1024 |
0.64940
|
|
The elliptic curves in class 2320d have
rank 1.
The elliptic curves in class 2320d do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.