Properties

Label 2320d
Number of curves 44
Conductor 23202320
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 2320d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2320.f3 2320d1 [0,0,0,242,1449][0, 0, 0, -242, -1449] 97960237056/72597960237056/725 1160011600 [2][2] 256256 0.043745-0.043745 Γ0(N)\Gamma_0(N)-optimal
2320.f2 2320d2 [0,0,0,247,1386][0, 0, 0, -247, -1386] 6509904336/5256256509904336/525625 134560000134560000 [2,2][2, 2] 512512 0.302830.30283  
2320.f1 2320d3 [0,0,0,827,7546][0, 0, 0, -827, 7546] 61085802564/1132812561085802564/11328125 1160000000011600000000 [4][4] 10241024 0.649400.64940  
2320.f4 2320d4 [0,0,0,253,6286][0, 0, 0, 253, -6286] 1748981916/176820251748981916/17682025 18106393600-18106393600 [4][4] 10241024 0.649400.64940  

Rank

sage: E.rank()
 

The elliptic curves in class 2320d have rank 11.

Complex multiplication

The elliptic curves in class 2320d do not have complex multiplication.

Modular form 2320.2.a.d

sage: E.q_eigenform(10)
 
q+q53q92q136q17+8q19+O(q20)q + q^{5} - 3 q^{9} - 2 q^{13} - 6 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.